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Tigran Kalberer

Capital allocation for stochastic  
simulation approaches 
Introduction – the relevance  
of capital allocation

Sound risk management approa-
ches require a full “dashboard” of 
instruments to measure, monitor 
and budget risks. There is not one 
single metric to measure and man-
age risks, but a full suite of metrics 
should be at the disposal of the pro-
fessional risk manager. The metrics 
range from not to be underestima-
ted qualitative approaches to highly 
sophisticated quantitative approa-
ches, e.g. the determination of the 
reaction of the portfolios to different 
relevant (extreme) scenarios (or sen-
sitivities) or the determination of 
required capital, as required for sol-
vency-purposes by some regulators.

In this document we will focus on the 
latter, required capital. This requires 
the definition of required capital first.

Typically, and loosely speaking, re-
quired capital is the amount of capi-
tal necessary to ensure that adverse 
situations do not occur too often in 
a pre-specified period.

 To make this definition operational 
the vague terms in this definition have 
to be clearly specified, we will give the 
typical specifications here, but other 
definitions of course are possible:

•	 “capital”: amount of assets ex-
ceeding the assets covering the 
market-consistent value of lia-
bilities at t=0

•	 “adverse situation”: market-con-
sistent net value is negative at t=1

•	 “not too often”: only 1 in 200 
cases

•	 “pre-specified period”: one year

In (not very helpful) mathemati-
cal terms, we need to define the 
amount RC, such that: 
Prob (– ∆NAV1 ≤ RC) = 0.995 , where  
NAV1 is a random variable, of 
course depending on NAV0, which 
is Assets0- MVL0, where MVL0 is the 

market value of the liabilities (pos-
sibly, but we will not focus on this, 
including a market value margin) 
and ∆NAV1 is just (NAV1-NAV0).

Keeping capital in a company comes 
at a cost. Capital generates frictional 
costs, e.g. agency costs or asset ma-
nagement costs, but also reduces the 
LLPO (Limited liability put option) of 
the shareholder. On the other hand 
holding capital is beneficial as it al-
lows protecting franchise value and 
reduces the cost of raising capital at 
times which are not optimal for such 
a purpose. There are also tax impacts 
to be considered. Consumption of 
capital and beneficial impact how-
ever are not necessarily occurring 
uniformly over all portfolios consi-
dered. Thus it is important to measu-
re which portfolio consumes which 
amount of capital and take this con-
sumption into account when making 
management decisions.

This however is not as easy as it 
seems that due to the very nature 
of insurance business there is typi-
cally a large amount of diversifica-
tion between (the risks of) different 
portfolios. Thus required capital is 
typically not additive.

A very popular and theoretically 
sound approach to allocate capi-
tal to different portfolios is the so-
called Euler approach, which we 
define below. Basically this ap-
proach allocates capital according 
to the marginal impact each portfo-
lio has on the total required capital.

So this approach allows to answer 
most (but not all) questions around 
capital which have to do with chan-
ging the volumes of the portfolios 
considered, e.g. selling new busi-
ness in a portfolio which has similar 
risk characteristics to that portfolio.

Therefore this capital allocation ap-
proach is very popular and for good 
reasons.

It is however, far from trivial to de-
termine the Euler-allocated capital 
for a sub-portfolio.

The reason for this is that typically 
the required capital is determined 
using stochastic simulation.

While this approach allows deter-
mining the total required capital 
relatively easy, the determination 
of the Euler-allocated capital for a 
sub-portfolio using the standard si-
mulation approach is numerically 
unstable due to the large variance 
of the estimator. Therefore a number 
of approaches have been developed 
to overcome this problem. These 
approaches however are based on 
general approaches from the aca-
demic research area, which do not 
take the specific setting of our prob-
lem into account, but which we can 
exploit to define a numerically sta-
ble, highly convergent, approach to 
determine the Euler-allocated capi-
tal of a sub-portfolio. This approach 
is superior to the more general typi-
cal approaches. But this of course 
comes at a cost, the approach is 
only applicable in a specific setting. 
This however is the setting we have 
in most insurance-related versions 
of the problem to determine Euler-
allocations. So we just make use 
of the fact that we know where the 
approach is applied and utilize the 
specifics this environment shows. 
The requirements for this approach 
are listed below.

In the remainder of the document 
we will describe the approach and 
present a case study, assessing the 
improvement in accuracy using our 
approach.

The general set-up

A typical stochastic simulation ap-
proach for determining the required 
capital for an insurance company 
consists of the following steps:
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1) The generation of stochastic 
simulations for all relevant risk 
factors which are described 
with a multivariate distribution 
reflecting their realistic behavi-
or, including possibly complex 
dependency structures. Gene-
rating these simulations is a 
non-trivial problem and outside 
of the scope of this document.

2) Functions, which translate each 
combined realization of all risk 
factors into their impact on the 
balance sheet (NAV) of all in-
volved entities (which might 
be legal entities, separate funds 
etc.). Again, producing these 
functions is a non-trivial prob-
lem and outside of the scope of 
this document.

3) Consolidation mechanisms, 
which combine all these results 
for insurance groups, preferably 
reflecting also Capital and Risk 
Transfer Instruments (CRTIs). It is 
a complex problem to identify, 
describe and model these CRTIs.

These steps are by no means easy to 
design. However, we do not aim to 
elaborate on these.

Using this aforementioned ap-
proach we can estimate the Value at 
Risk (“VaR”) and expected shortfall 
(“ES”) of the portfolio (see below). 
But we struggle to determine the 
capital allocation of sub-portfolios 
to the portfolio. This is the problem 
which we will address in this paper.

Notation

The corresponding terminology is:

•	 We assume n relevant risk-
factors X1,X2,...,Xn–1,Xn and 
denote these by the vector 
X=(X1,X2,...,Xn–1,Xn). Relevant 
risk factors are all measurable 
aspects of reality which impact 
the net value of the portfolios 
considered, as interest rates in 
all relevant currencies, claims 
ratios etc. 

•	 We generate s simulations of 
these risk factors and obtain 

therefore s realizations xi = 
(xi

1,…,xi
n). 

•	 We furthermore assume m 
portfolios, subject to these risk-
factors, and the sum of these 
portfolios, which is denoted by 
“parent portfolio”. Our aim is 
to analyze the m portfolios and 
the “parent portfolio” in terms 
of capital allocation.

•	 The negative change in net as-
set value for these portfolios is 
described by functions P(1)(X), 
P(2)(X),..., P(m)(X). This could for 
instance be polynomials deri-
ved using a LSMC-approach. In 
fact any other approaches pro-
ducing proxy function could 
be used here, e.g. curve-fitting 
or replication portfolios. But 
using polynomials offers a dis-
tinctive advantage as we will 
see below.

•	 Clearly the negative net asset 
value change of the parent port-
folio is P(X) := ∑j≤m Pj (X).

•	 The functions which evaluate 
a realization (xi

1,…,xi
n) have for  

reasons of notational accuracy, 
so we define for all j: 
pj(xi

1,…, xi
n):=P(j)(X) (xi

1,…,xi
n).

•	 For convenience we use the fol-
lowing definitions:

 – We split the set X of risk 
factors into the first n-1 and 
the last factor, i.e. X=(Y,Z), 
with Y=(X1,X2,...,Xn–1) and 
Z=(Xn). 

 – In order to analyze the im-
pact of the m-th portfolio, 
we split the “parent port-
folio” into P(m)(Y,Z) and the 
sum of all remaining portfo-
lios P(j<m)(Y,Z) = ∑j<m P(j)(Y,Z).  
The “parent portfolio” 
can hence be written as 
P(Y,Z) = P(m)(Y,Z) + P(j<m)(Y,Z).

 – Without loss of generali-
ty we can assume that the 
functions P, P(m) and P(j<m) 
have a finite set of roots 
w.r.t. Z, for all given reali-
zations of  Y.

Determining required capital  
by stochastic simulation

The value at risk VaRq at a certain 
quantile q for the “parent portfolio”, 
is typically estimated by choosing 
VaRq such that 

Prob(P(X) ≤ VaRq) 
≈  ∑i1{p(xi)≤VaRq} = q. 

Here, 1{statement} is the indica-
tor function, defined as 1 if the 
statement is true and 0 otherwise. 
Sorting the results p(xi), i=1,…,s fa-
cilitates the determination of VaR 
more easily than using this sum. 
Non-parametric confidence inter-
vals for this estimation of VaR can 
be determined easily, see [4].

Euler-allocation

A typical question in a real risk ma-
nagement context is: 
“What is the contribution of portfo-
lio m to the overall VaR for the pa-
rent portfolio?”

We aim to determine the contribu-
tion of the portfolio m to the over-
all VaR, which we denote with Cm. 
Many approaches have been sugges- 
ted to determine this contribution. 
One approach often mentioned in 
theory and practice is the Euler-al-
location:

Cm := VaRα(h) |{h = 0} 
= VaR(P(X)+hP(m)(X)) |{h = 0}.

While this is the original definition 
of the Euler-allocation, it is not a 
well-suited definition in a  stochas-
tic-simulation setting. Thus equiva-
lent definitions are typically used. A 
very popular alternative is derived 
in [6]: Cm := E(P(m)(X) | P(X) = VaR). 
While applying this definition we 
incurred difficulties however be-
cause the concept of conditional 
expectations is less well-defined as 
one would think, causing real pro-
blems.

Note that it is not a straightforward 
and easy task to determine this risk 
allocation stochastically. Many ap-
proaches have been suggested, but 
all suffer from numerical instability.
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A very naïve approach would be to 
determine the (nearest) simulation 
for which p(simulation)=VaR holds 
and then evaluate Pm(simulation).

Why is this not a good approach? 
This is because we actually have a 
whole manifold of simulations with 
p(simulation)=VaR and all what 
we do is pick exactly one of these 
simulations arbitrarily out of this 
manifold, i.e. estimate the quantity  
(P(m)(X)|P(X)=VaR) by using one simu-
lation! Obviously this estimation has 
a large confidence interval around 
Cm and is basically unusable.

The other approaches mostly try to 
avoid this situation by using simu-
lations near the VaR and averaging 
these using clever weighting.

The new “main risk factor  
based” approach

We suggest a new approach, which 
is numerically stable but requires 
the following assumptions.

Assumptions

a)  The set of roots for a given y  
P –1

y (VaR) = {Z:P(y,Z)=VaR} can 
be determined and is finite for 
each y. 

b)  The cumulative distribution 
function of the risk factor Z, i.e. 
FY

z for given Y is known and nu-
merically feasible. 

c)  We know, or have estimated, 
the overall VaR, to which we 
want to determine contribu-
tions (“allocations”).

Remark: It is not necessary to have 
a full analytical description of the 
relationship between all risk fac- 
tors and the change in net asset 
value. It is however beneficial to 
have an analytical relationship be-
tween the selected main risk factor, 
given a constellation of remaining 
risk factors Y, and the change in 
net asset value, just in order to be 
able to easily determine P–1

y  (VaR). It 
is also helpful if the distribution of 
the main risk factor is independent 
of that of the remaining risk factors 

Y and this distribution is analytical, 
this enables to determine FY

z easily.

As we see later, the main risk factor 
Z should also be chosen such that 
it is the risk factor with the largest 
impact on P around the VaR.

We can define the Value at risk for 
a given quantile α and Portfolio 
P(X) + hP (m)(X), VaR(h) by:

Prob (P(X) + hP (m)(X) ≤ VaRα(h)) = α 

For sufficiently well behaved distri-
butions we have:

Prob (P(X) + h · P (m)(X) ≤ VaRα(h)) 
=∫ΩY ∫ΩZ 1P(Y,Z)+h∙P(m)(Y,Z) ≤ VaRα(h)dFY

Z dFY 
=∫ΩY(∑i Si  dFY

Z) dFY 

where 1a ≤ b is 1, if a ≤ b and 0 other-
wise, Root(i,Y,h) is the i-th root of 
P(Y,Z) + h ∙ P(m)(Y,Z) – VaRα(h) in Z,  
for given Y and h and the sum is 
taken over all such roots. Si is 1 if 
P(Y,Z) + h ∙ P(m)(Y,Z) – VaRα(h) is ne-
gative on [Root(i,Y,h),Root(i + 1,Y,h)] 
and 0 otherwise. Further on 
Root(0,Y,h) := – ∞ and the last root is 
∞. FY

z and FY are the distribution func-
tions of Z given Y and Y respectively.

Therefore, for v≠0 

0 =  ∫ΩY (∑i Si  dFY
Z) dFY | h = v 

= ∫ΩY (∑i Si   dFY
Z | h = v) dFY

= ∫ΩY (∑i Si (C(i + 1) – C(i))) dFY

with

C(i)) := f Y
Z | Z=Root(i,Y,v)  Root(i,Y,h) | h=v 

Where f Y
Z is the density associated 

with FY
Z.

Set:

R(i,h) := Root(i,Y,h)
V(h) := VaRα(h)
P(i,v) := P(m) (Y,Root(i,Y,v))

By definition:

0 = P(Y,R(i,h)) + hP(i,h) – V(h)

Thus: 

0 =  (P(Y,R(i,h)) + hP(i,h) – V(h) | h=v

=  R(i,h) | h=v  P(Y,Z)(R(i,v)) 
+ v  P(i,h) | h=v + P(i,v) –  V(h) | h=v

Therefore

If  P(Y,Z)(Root(i,Y,v)) = 0, then the-
re is no change of sign of P(Y,Z) at 
Root(i,Y,v) and we can omit i in the 
summation over the roots. We as-
sume without loss of generality that 
this is the case.

Combining these results we have:

0 = ∫ΩY (∑i Si (C(i)  – C(i) ) dFY 

with

A(i) := – P(i,v) – v ∙  (P(i,h) + VaRα(h)) | h=v 

B(i,v) :=  P(Y,Z)(Root(i,Y,v))

C(i) := FY
z | Z=Root(i,Y,v) 

P(i,v) := P(m)(Y,Root(i,Y,v)).

Now we consider the case when 
v->0, and note that the roots are 
heavily v-dependent, but not the 
number of roots, for v sufficiently 
close to 0. We also assume that the 
roots are continuous on v for fixed Y.

Obviously, if  P(Y,Z)(Root(i+1,Y,0)) 
is positive then P(Y,Z) – VaRα is nega-
tive on [Root(i,Y,0),Root(i + 1,Y,0)] 
and thus Si = 1. If  P(Y,Z)(Root(i + 1,Y,0)) 
is negative, then Si = 0. And we know 
that the signs of  P(Y,Z)(Root(i,Y,0)) 
are strictly alternating here. Thus:

0 = ∫ΩY (∑i Si (C(i + 1)  – C(i) )) dFY 

= ∫ΩY (∑i C(i) ) dFY 

with

A(i) := – P(i,0) +  VaRα(h) | h=0 

B(i,v) :=  P(Y,Z)(Root(i,Y,v))

C(i) := FY
z | Z=Root(i,Y,0) 

P(i,v) := P(m)(Y,Root(i,Y,v)).

Therefore:
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We now approximate the integrals, 
which in fact are expected values, 
by stochastic simulation, as usual:

As we can see the integrals are now 
evaluated scenario-wise and the di-
mension of the integration has been 
reduced by 1 at the cost of determi-
ning roots and evaluating the condi-
tional density.

The quality of the estimator is the 
better the lower the volatility of 

 
and

 
is.

A necessary condition for a low vo-
latility is that these sums are not ta-
ken over empty index-sets often, i.e. 
that for many chosen simulations Yi 
there are roots of  P(Y,Z) – VaRα. 

This is the case if we choose the  
risk factor Xn to be the risk factor 
with the largest variability and im-
pact, i.e. potential to create solu-
tions of P(Y,Z) – VaRα.

So the process is as follows:

1) Draw a sufficient number s of 
simulations for the risk factors 
yi = (x i

1,x i
2,…,x i

n – 1), i=1,…,s.

2) Determine P– 1(yi,VaR) for each of 
these. Here it helps if P is a polyno-
mial of sufficiently low degree.

And we remember the reader, that 
VaR must be known and is regarded 
as a constant here.

3) Determine 

Obviously: 

It might now seem difficult to de-
termine the conditional probability 
density f y

z
j | Z=Root(i,y j,0) for (yi,z) with 

the yis given, since the multivariate 
distribution of the risk factors might 
be complex, or even based on cau-
sal structures, not allowing to deter-
mine this probability analytically.

But in all cases known to the author 
the generation of the simulations 
x1,…,xs are generated by creating k-
dimensional independent standard 
normal simulations r1,…,rs and deri-
ving the risk factor simulations from 
this using a well-defined function 
RF, such that: RF(ri) = xi, i = 1,…,s.

The only thing we need to do in this 
case is change our point of view: We 
just apply our approach using the 
functions P(1)(RF(R)), P(2)(RF(R)),..., 
P(m)(RF(R)) and consider the R as risk 
factors. 

Certainly we know how to calculate 
the conditional probability density 
f y

z
j | Z=Root(i,y j,0) with given yi for a mul-

tivariate distribution of independent 
normal variables.

If the roots of the functions P(i)(RF(R)) 
turn out to be difficult to determine 
we just can use a LSMC approach 
to fit polynomials for the net value 
to the standard normal simulations 
r1,…,rs.

Case study

For the case study we choose the 
following setting:

1) Three risk factors X ,Y and Z with 
multivariate normal distribution 
expressed by a covariance mat-
rix C and expected value 0.

2) 10’000 simulations and 100 
experiments, i.e. different esti-
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mations of the Euler-allocation 
using new sampled random 
numbers.

3) Three polynomials in these 3 
risk factors representing three 
entities, P1, P2 and P3. The 
parent entity is the sum of the-
se three polynomials. This is of 
course an example, which is a 
little bit artificial, because if we 
have such a nice setting, we 
could as well generate enough 
simulations forcing the naïve 
approach to converge.  In such 
a setting the application of the 
new approach only makes sen-
se if the gain in convergence 
speed is not outweighed by the 
loss in calculation speed caused 
by the necessity to determine 
the roots of the polynomials 
considered. This for example is 
the case if the polynomials have 
sufficiently low degree.

4) A = 99.5 % quantile for determi-
ning the VaR

5) Risk factor with analytic dis-
tribution used for the new ap-
proach: z

6) We compare the results derived 
using the above described ap-
proach with the naïve approach, 
which is using the average of 
the respective subportfolio as-
sociated with 2N simulations of 
the parent portfolio around the 
VaR as approximation for the 
Euler-allocation.

7) We observe that there is ano-
ther interesting approach to 
determine the Euler-allocation 
avoiding the deficiencies of the 
standard approach. This is the 
approach described in Tasche 
(2008), formula (3.9). We also 
give the results of this approach.

Results:

Harmless case:

C =
 1.5 0.5 – 0.5
 0.5 1.5 0.5
 – 0.5 0.5 1.5  

Figure 1: 

P1(x,y,z) := 300 + 20y + 10z + 30x + yx2 
P2(x,y,z) := 200 – 10y – 20z – 20x 
P3(x,y,z) := 300 + 15y + 15z + 5x + 0.1yx2 

N = 3

The graph shows the results sorted 
into 10 equally-spaced buckets and 
we can clearly see that the new ap-
proach is superior. The x-axis is the 
estimation of the Euler-allocation in 
the experiments and the y-axis shows 
how many experiments yielded re-
sults corresponding to the value on 
(or near) the value given by the x-axis.

The Tasche 2008-approach suf-
fers from the fact that it introduces 
a bias, as the “steepness”-factor in 
Tassche’s linear formula, ,  
is determined over the whole range 
of the scenarios, not focusing on the 
area around the VaR. Restricting to 
this area however produces too lar-
ge an estimation error for the factor 

. However I expect this ap-
proach to work much better, if this 
approach is extended to a non-lin- 
ear approach, as indicated by Tasche.

The volatility of the Euler-alloca-
tions of the three portfolios is:

Volatility(Naïve approach, P1)=5.1
Volatility(New approach, P1)=3.326
Volatility(Naïve approach, P2)=7.24
Volatility(New approach, P2)=1.748

Volatility(Naïve approach, P3)=7.945 
Volatility(New approach, P3)=2.558

Complex case:

Same parameters as above, except: 

P1(x,y,z) := 300 + 20y + 10z + 30x 
P2(x,y,z) := 200 – 10y – 15z2 – 10x 
P3(x,y,z) := 300 + 15y + 15z2 – 5x 

Results: Figure 2

Volatility(Naïve approach, P1)=3.341
Volatility(New approach, P1)=2.465
Volatility(Naïve approach, P2)=12.65
Volatility(New approach, P2)=2.579
Volatility(Naïve approach, P3)=13.926
Volatility(New approach, P3)=2.893

Case with wide dispersion  
of the risk factor z:

Parameters as in the harmless case, 
except: 

C =
 1.5 0.5 – 0.5
 0.5 1.5 0.5
 – 0.5 0.5 5.0

Results: Figure 3
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Figure 2: 

Volatility(Naïve approach, P1)=5.942
Volatility(New approach, P1)=3.006
Volatility(Naïve approach, P2)=15.306
Volatility(New approach, P2)=2.443
Volatility(Naïve approach, P3)=12.85
Volatility(New approach, P3)=2.364

Volatility(Naive_approach_P1)=8.445
Volatility(New_approach_P1)=2.684
Volatility(Naive_approach_P2)=23.278 
Volatility(New_approach_P2)=3.509
Volatility(Naive_approach_P3)=17.666
Volatility(New_approach_P3)=2.816

Apart from the massively impro-
ved convergence of the approach 

the robustness of the approach is 
superior as it does not produce 
biased results. Indeed if the VaR 
changes not linearly for simula-
tions near the VaR then the naïve 
approach obviously converges to 
values which are inconsistent with 
the true Euler allocations as it is 
a symmetric approach. The naïve 
approach is a biased approach. 
While in most cases this might be 
a negligible effect it is hard to as-
sess in reality whether this effect 
can be neglected. In contrast, the 
new approach is unbiased and ro-
bust.
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