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Abstract

Background: Exocrine pancreatic insufficiency (EPI) is a serious condition characterized by a lack of  
functional exocrine pancreatic enzymes and the resultant inability to properly digest nutrients. EPI can be 
caused by a variety of  disorders, including chronic pancreatitis, pancreatic cancer, and celiac disease. EPI 
remains underdiagnosed because of  the nonspecific nature of  clinical symptoms, lack of  an ideal diagnostic 
test, and the inability to easily identify affected patients using administrative claims data. 

Objectives: To develop a machine learning model that identifies patients in a commercial medical claims 
database who likely have EPI but are undiagnosed.

Methods: A machine learning algorithm was developed in Scikit-learn, a Python module. The study 
population, selected from the 2014 Truven MarketScan® Commercial Claims Database, consisted of  
patients with EPI-prone conditions. Patients were labeled with 290 condition category flags and split into 
actual positive EPI cases, actual negative EPI cases, and unlabeled cases. The study population was then 
randomly divided into a training subset and a testing subset. The training subset was used to determine the 
performance metrics of  27 models and to select the highest performing model, and the testing subset was 
used to evaluate performance of  the best machine learning model. 

Results: The study population consisted of  2088 actual positive EPI cases, 1077 actual negative EPI cases, 
and 437 530 unlabeled cases. In the best performing model, the precision, recall, and accuracy were 0.91, 
0.80, and 0.86, respectively. The best-performing model estimated that the number of  patients likely to have 
EPI was about 12 times the number of  patients directly identified as EPI-positive through a claims analysis 
in the study population. The most important features in assigning EPI probability were the presence or 
absence of  diagnosis codes related to pancreatic and digestive conditions.

Conclusions: Machine learning techniques demonstrated high predictive power in identifying patients with 
EPI and could facilitate an enhanced understanding of  its etiology and help to identify patients for possible 
diagnosis and treatment. 
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Background

Exocrine pancreatic insufficiency (EPI) is a serious condition characterized by a lack of  functional exocrine 
pancreatic enzymes and the resultant inability to properly digest fats, carbohydrates, and proteins.1 Common 
pancreatic causes of  EPI include chronic pancreatitis, severe acute pancreatitis, pancreatic cancer, pancreatic 
surgery, and cystic fibrosis.1-3 Non-pancreatic causes of  EPI include a history of  celiac disease, diabetes 
mellitus, Crohn’s disease, gastric surgery, short bowel syndrome, and Zollinger-Ellison syndrome.1,3 The 
main symptoms of  EPI are steatorrhea (ie, excess fat in the stool), abdominal bloating/discomfort, and 
weight loss.1

Although an early and accurate diagnosis of  EPI is critically important to optimize patient outcomes,3,4 the 
condition remains underdiagnosed.1 In addition, there is a lack of  consensus regarding the best diagnostic 
approach, and experts have noted the non-reliability and non-specificity of  available diagnostic tests.1 
Currently available diagnostic tests for EPI include fecal fat quantification, the fecal elastase-1 test, and 
the 13C-mixed triglyceride breath test.4 Diagnosing EPI is challenging because its symptoms may be vague 
or overlap with those of  other gastrointestinal disorders.1 Other barriers to the diagnosis of  EPI have 
also been identified: (1) currently available tests are cumbersome and unpleasant;5 (2) tests are not widely 
available or accurate for patients in the early to moderate stages of  EPI;5 (3) there is no International 
Classification of  Diseases, Ninth Revision, Clinical Modification (ICD-9-CM) or Current Procedural 
Terminology (CPT) code that definitively identifies a patient with EPI, thus tracking has been difficult from 
a claims perspective;6 and (4) use of  an International Classification of  Diseases, Tenth Revision (ICD-10) 
code introduced for EPI in October 2016 may not yet be integrated into administrative claims data or 
electronic medical records (EMR). 

The precise incidence and prevalence of  EPI are difficult to determine due to its underdiagnosis; furthermore, 
medical statistics on EPI are usually not reported.1 Some data suggest, however, that the prevalence of  EPI 
in patients with chronic pancreatitis is 30% to 40% and that the prevalence of  EPI in patients with cystic 
fibrosis is 80% to 90%.2 Studies have also shown that more than 40% of  patients with type 1 diabetes 
mellitus and 30% of  patients with type 2 diabetes develop mild to moderate EPI.2 At present, reliable 
estimates of  EPI prevalence in the general population are lacking.4

Left untreated, EPI can have a deleterious effect on quality of  life and may lead to the development of  
nutritional deficiencies and subsequent malnutrition-related conditions.4 The goals of  EPI treatment are to 
alleviate the unpleasant clinical symptoms related to maldigestion and to correct nutritional deficiencies.7 
Currently, EPI is treated with lifestyle modifications (ie, smoking cessation; alcohol abstinence; and the 
consumption of  frequent, low-volume meals) and oral pancreatic enzyme replacement therapy (PERT), the 
latter of  which is the cornerstone of  EPI treatment.4 Guidelines established by international societies are 
largely in agreement that more aggressive treatment of  EPI is needed.5,8-12

The purpose of  the current study was to identify patients in a commercial medical claims database who likely 
had EPI but were undiagnosed. To that end, we performed a claims data analysis using machine learning, a 
data analytics approach that is being increasingly used as a predictive tool in the field of  medicine.13-24
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Methods

Data Source

We used the 2014 Truven MarketScan® Commercial Claims Database (hereafter MarketScan) to identify 
the study population. MarketScan is a large dataset that contains enrollment data and health benefit claims 
data for more than 39 million commercially insured lives from more than 100 employer and health plan 
contributors. The enrollment data include beneficiary age, dependent status, and monthly eligibility status. 
The claims data include coding information (diagnosis, procedure, revenue, diagnosis-related group, and 
national drug codes), service dates, and site of  service.

Study Population

The source population consisted of  commercially insured individuals selected from the MarketScan database 
who were 0-64 years old at the end of  2014 and were active or disabled (not part-time or temporary) 
employees or their dependents. In addition, individuals were required to have prescription drug coverage 
for the entire duration of  their medical coverage period and could not be enrolled in capitated health plans. 

For modeling, we extracted all claims from the source data and constructed an enriched study population 
by selecting individuals who fell into broad categories of  diagnoses that are prone to EPI. These categories 
included inflammatory conditions of  the pancreas, other pancreatic conditions (including unspecified 
diseases of  the pancreas), malabsorption syndromes, inflammatory bowel disease, insulin-taking diabetes, 
and HIV; individuals who had undergone bariatric surgery were also included. We excluded individuals who 
had conditions that were almost certainly associated with EPI (ie, cystic fibrosis and pancreatic cancer) 
and those who had undergone radical pancreatic surgeries (ie, pancreaticoduodenectomy, radical subtotal 
pancreatectomy, or total pancreatectomy). It is highly likely that the excluded individuals would be recognized 
as being at high risk of  EPI, thus we did not want their characteristics to overshadow the characteristics 
of  less EPI-prone cohorts. Non-insulin-dependent diabetics were also excluded from the study population 
after preliminary data analyses found a low association of  EPI in that group. See Table A1 in the Technical 
Appendix for a full list of  the conditions used to include and exclude patients from the study population.

Machine Learning Algorithm

Machine learning is a computer-based data analytics approach that automates model building through the 
use of  algorithms that iteratively learn from and adapt to subject data.25 To develop our models, we used the 
open source library Scikit-learn, a Python module featuring machine learning algorithms.26  

Machine learning uses terminology that differs from that of  statistical analysis, the latter of  which may 
be more familiar to the health care readership. A basic knowledge of  machine learning terminology, 
however, is needed to understand the methodology used in our analysis. See Table 1 for a comparison of  
the terminologies used in machine learning and statistical analysis.

Machine learning often uses highly technical iterative processes and trials to develop workable models. A 
common practice in machine learning is to explore several approaches to improve model fit.
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We used a three-step procedure to create the main input to our machine learning model. 

1)	 Two hundred and ninety condition category flags (features) were constructed. These categories 
were composed of  broad, clinically-related ranges of  various codes: 74  ICD-9-CM diagnosis code 
categories, 5 ICD-9-CM procedure code categories, 37 CPT code categories, 70 revenue code 
(REVCODE) categories, and 104 national drug code (NDC) categories. 

2)	 Each claim for each member of  the study population was assigned a flag for each condition category 
to indicate whether the condition was present (flag = 1) or not present (flag = 0). 

3)	 Claim-level flags were summarized to create a single set of  the 290 condition category flags for each 
member in the study population. The value in each condition category indicated the total number of  
claims in that category. Patient age and sex, as well as prescription counts for patients who had been 
treated with a PERT, were also used to create the machine learning model.

We used a nine-step procedure to create our machine learning model and to generate, validate, and assess 
the results.

1)	 The study population was divided into three groups: actual positive cases (patients believed to have 
EPI), actual negative cases (patients believed to not have EPI), and unlabeled cases (patients with 
unknown EPI status). Actual positive cases (or “true positives”) included patients who had filled ≥ 
3 prescriptions for a PERT. Actual negative cases (or “true negatives”) included patients who had 
undergone a fecal elastase-1 test (CPT code 82656) but had not filled a PERT prescription. 

2)	 The study population was randomly divided into an 80% training subset and a 20% testing subset. 
The training subset was used to determine the performance metrics and select the highest performing 
model, and the testing subset was used to evaluate performance of  the best-performing machine 
learning model using data not used to train or select the model.

3)	 A baseline model was created to predict the classification of  an observation based on several input 
variables – in this case, to classify whether a patient has or does not have EPI. The latter was accomplished 
using least absolute shrinkage and selection operator (LASSO) with logistic regression, a method that 
is commonly used to classify data.27 LASSO penalizes the absolute size of  the regression coefficients, 
which in practice, leads to sparse coefficients of  the input variables in the logistic regression and is 
helpful when there are many correlated input variables. 

4)	 Additional models were created using other machine learning techniques with different underlying 
frameworks to determine which framework was best for the input data and model goals. The additional 
machine learning techniques included gradient-boosted classification trees, support vector machines, 
and random forest. Random forest is an ensemble method that leverages a collection of  decision trees 
that generate a response when presented with a set of  features.

5)	 Adjustments were applied to handle “imbalanced data,” which occurs when one or more of  the binary 
classes is underrepresented, and included modifying class weights, oversampling, and undersampling. 
See Table A2 in the Technical Appendix.

6)	 A 3x3 nested cross validation process was applied to several random forest models to determine 
the hyperparameters (ie, the set of  parameters that defines the properties of  the model, such as the 
number of  decision trees in a random forest) and to generate performance metrics. This process 
was applied to the training subset and consisted of  two steps: outer cross validation and inner cross 
validation. In the outer cross validation step, the training subset was split into three folds (groups). 
Two of  the folds were used to train the model on the parameters, and the remaining fold acted as 
the validation set. This process was repeated until every fold acted as the validation set one time. 
Within the training folds assigned by the outer cross validation step, the folds were further split 
into three sub-folds for the inner cross validation process. Two of  the sub-folds were used to tune 
the parameters, and the remaining sub-fold acted as the validation set. The hyperparameters were
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	 optimized by selecting the best performing set, as measured by the average performance metrics over 
three validation sets through inner cross validation. The performance metrics of  the selected random 
forest models were then calculated in the validation set through outer cross validation. The inner cross 
validation process was repeated separately over the three outer cross validation splits; that is, we had 
three sets of  hyperparameters from three inner loops and three sets of  performance metrics from 
three outer loops. The performance metrics were averaged for the purpose of  choosing the best-
performing model.28 See Tables A3 and A4 in the Technical Appendix.

7)	 The performance metrics of  27 models were examined. Model performance was evaluated using each 
patient’s outputted EPI probability. The metrics used to optimize hyperparameters or to compare the 
baseline model with other models included precision, recall, F1 score, Fbeta=10 score, positive-unlabeled 
(PU) score, and Brier score loss; see Table 2.

8)	 The best-performing model was retrained on the full 80% training subset and applied to the 20% 
testing subset to calculate the performance metrics. Results were summarized in a confusion matrix, 
which is a commonly used template for presenting the results of  binary classifications in machine 
learning. A receiver-operator characteristic curve was developed.

9)	 After assigning the probability of  EPI, we further examined patients’ claims to determine whether the 
probability assignments were clinically reasonable. To that end, we used two approaches. In the first 
approach, we extracted cohorts of  patients in the 10% to 20% EPI probability bucket and the 80% to 
90% EPI probability bucket and summarized the top 30 code counts for patients in each bucket. In 
the second approach, we generated a relative importance measure for each feature based on its unique 
impact on the overall Gini impurity of  the model. Gini impurity is a measure of  the randomness of  
the model being evaluated, and the sum of  the relative Gini impurity measures for all features is 1.00. 
Our goal was to minimize the Gini impurity of  the model in order to optimize the accuracy of  patient 
classification. 

Table 1. Terminology Used in Machine Learning and Statistical Analysis

Machine Learning Statistical Analysis
Feature Explanatory variable
Confusion matrix Contingency table of  predicted and actual status
Recall Sensitivity 
Precision Positive predictive value
F1 score Harmonic mean of  sensitivity and positive predictive value

Table 2. Performance Metrics Definitions

Metric Definition

Precision
Measure of  model exactness; the ratio of  successful model predictions over all cases 
predicted to be positive

Recall
Measure of  model completeness; the ratio of  successful model predictions over all cases that 
are actual positives

F1 score
Measure of  model accuracy; the harmonic mean of  precision and recall (reciprocal of  the 
mean of  the reciprocals of  precision and recall)

Fbeta=10 score
Similar to F1 score with an additional parameter (beta) that assigns greater weight to the recall 
measure of  the model

Positive-unlabeled score Measure of  model performance that is positively correlated with the F1 score
Brier score loss Measure of  the mean squared differences of  the outcome and predictive probability
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Results 

In total, 440 695 patients out of  the 39 million patients in the MarketScan database met the study inclusion 
criteria. Of  these patients, 2088 were actual positive EPI cases and 1077 were actual negative EPI cases. 
The remaining 437 530 patients were unlabeled cases. Because actual positives and actual negatives were 
underrepresented, the data was considered imbalanced.

We found that the three models with the highest performance scores were all random forest models. The 
baseline LASSO model demonstrated the highest performance in recall, Brier score loss by labeled data, and 
F1 score; however, the baseline model was not the highest performing model overall because it generated 
an unreasonably high count of  positive cases in the unlabeled data (0.93). Three random forest models, 
which assumed that unlabeled data represented negative EPI cases, generated high recall and precision on 
the labeled data. These models also accurately estimated a small number (between 0.04 and 0.06) of  positive 
cases in the unlabeled data and a small Brier score loss (between 0.14 and 0.16) on the full dataset, thereby 
making them high-performing models. See Table 3.

Table 3. Results of  Baseline and High-performing Models

Baseline 1 2 3
Model Type LASSO Random Forest Random Forest Random Forest
Metrics

Unlabeled data
Ignored unlabeled 
data

Assumed negative, 
ignored actual 
negative cases

Assumed negative, 
ignored actual 
negative cases

Assumed negative, 
ignored actual 
negative cases

Imbalanced data N/A
Downsample, class 
weight

Downsample, 
subsample balanced 
weight

Repeated random 
subsampling

Validation method
80% / 20% split 
validation

Nested cross 
validation

Nested cross 
validation

Nested cross 
validation

Optimized metric in 
hyperparameter selection None

F(beta=10) using 100 
random iterations

F(beta=10) × 100 + 
PU score using 100 
random iterations

F(beta=10) × 100 + 
PU score using 60 
random iterations

Scores
Fbeta=10 score (all data)  0.32  0.71  0.71  0.72 
PU score (all data)  0.93  9.22  12.45  10.69 
Recall (labeled data)  0.92  0.81  0.77  0.80
Brier score loss (labeled data)  0.10  0.14  0.16  0.15
Brier score loss (unlabeled data 
assumed negative)  0.60  0.06  0.03  0.04
F1 score (labeled data)  0.90  0.86  0.84  0.86
Precision (labeled data)  0.88  0.91  0.93  0.91
Probability of  unlabeled cases 
to be labeled as positive 0.93 0.07 0.04 0.06

LASSO: least absolute shrinkage and selection operator; PU: positive-unlabeled

For Model 3, the best performing of  the four models, we determined that there were 336 true-positive 
patients (ie, patients who were accurately predicted to have EPI) and 183 true-negative patients (ie, patients 
who were accurately predicted to not have EPI), with predicted EPI defined as a patient with an EPI risk of  
≥50%. There were 32 false-positive patients (type I error); these were patients who were predicted to have 
EPI but did not actually have it. There were 82 false-negative patients (type II error); these were patients
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who had EPI but were not predicted to have it. See Table 4, which shows the confusion matrix for the 
88,140 patients in the testing subset.

Table 4. Confusion Matrix of  Model -3

Predicted Condition
No EPI EPI

Actual Condition No EPI 183
(True negatives)

32
(False positives, type I error)

EPI 82
(False negatives, type II error)

336
(True positives)

Unknown 82 546 4961

Note: The 2x2 cells shaded in gray represent the confusion matrix
EPI: exocrine pancreatic insufficiency

The number of  patients known to have EPI in the testing subset (82 false negatives + 336 true positives) 
was 418. Of  the 87 507 previously unlabeled patients in the testing subset, 4961 patients (6%) were identified 
as being likely to have EPI, which is approximately 12 times the number of  patients in the study population 
who were identified as being positive for EPI.

From the confusion matrix, we determined key evaluation metrics pertaining to the performance of  Model 
3, including precision, recall, and F1 score. Precision, the ratio of  true positives over the sum of  true 
positives and false positives (336/{32+336}), is a measure of  exactness and was found to be 0.91. Recall, 
the ratio of  true positives over the sum of  true positives and false negatives (336/{82+336}), quantifies the 
completeness of  model results and was found to be 0.80. The F1 score, the harmonic mean of  precision 
and recall, depicted as the reciprocal of  the mean of  the reciprocals of  precision and recall ({0.91×0.80}/
{0.91+0.80}×2), is a measure of  accuracy that was found to be 0.86, where 1.0 represents perfect accuracy. 
The area under the receiver-operator characteristic curve (AUROC) is a measure of  the predictability of  
the model. An AUROC equal to 1.00 represents a model that perfectly predicts an outcome. An AUROC 
of  0.50 represents a model with no predictability. In our study, AUROC for the labeled data was found to 
be 0.94.

In the final step of  our study, we applied Model 3 to the 20% testing subset, which assigned each patient a 
probability of  having EPI. We observed that out of  a sample of  88 140 patients, 5329 patients (6%) were 
now captured as EPI patients, with EPI defined as a patient with an EPI risk of  ≥ 50%. If  the EPI risk 
threshold was increased to 75%, only 1376 patients (2%) were captured as EPI patients. See Table 5.

In practice, Model 3 could be further applied to the training subset or to new datasets to identify potential 
previously unidentified patients with EPI. It is important to note, however, that model performance will 
vary when applying any model to new datasets that differ significantly from the 80% training subset (eg, 
in terms of  population demographics or other characteristics). In such situations, the results should be 
interpreted with caution, and if  possible, model performance should be re-evaluated on the new population 
and data source.

From our lower (10% to 20%) and upper (80% to 90%) tail analysis for clinical reasonability, we observed 
that two CPT code features – Evaluation and Management (E&M) (99201 – 99499) and Pathology (80047 
– 89398) – were the forerunners in both probability buckets, where nearly all patients had at least one E&M 
or Pathology claim. The finding was not unexpected, as the study population represented an enriched group 
of  patients with pancreatic conditions that would require laboratory work and diagnostic or management
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evaluations. These two features, therefore, were not key predictors in determining EPI probability. We 
observed several other overlapping features between the 10% and 20% EPI probability bucket and the 
80% to 90% EPI probability bucket, such as Mental (diagnoses) and Radiology – diagnostic (procedures); 
however, in the 80% to 90% EPI probability bucket, more features related to conditions of  the pancreas 
and digestive system were found at the top of  the list than was the case in the 10% to 20% EPI probability 
bucket. See Tables 6a and 6b.

Table 5. Probability of  EPI Assigned to Each Patient by Model 3

Probability of  EPI Number of  Patients Predicted to have EPI
0% - < 5% 35 868

Not likely to have EPI
5% - < 10% 18 022
10% - < 15% 11 895
15% - < 20% 7470
20% - < 25% 4186
25% - < 30% 2248

Possibly likely to have EPI
30% - < 35% 1085
35% - < 40% 711
40% - < 45% 671
45% - < 50% 655
50% - < 55% 719

Likely to have EPI
55% - < 60% 666
60% - < 65% 678
65% - < 70% 884
70% - < 75% 1006
75% - < 80% 767

Highly likely to have EPI
80% - < 85% 397
85% - < 90% 192
90% - < 95% 20
95% - 100% 0
Total
0% - < 25% 77 441
25% - < 50% 5370
50% - < 75% 3953
75% - < 100% 1376

EPI: exocrine pancreatic insufficiency
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Table 6a. Most Frequent Features in Patients with 10% to 20% EPI Probability 

Feature Code Type

Portion of  
Patients with ≥1 

Observations

Average Number of  
Observations  for Patients  

with ≥1 Observations
Evaluation and Management CPT 100% 15.81
Pathology CPT 97% 28.03
Medicine CPT 90% 17.72
Special Encounters DIAG 78% 24.07
Other Symptoms DIAG 77% 21.96
Radiology CPT 74% 5.85
Cardiovascular CPT 73% 3.84
Metabolic DIAG 69% 24.45
Musculoskeletal DIAG 64% 24.15
Laboratory REVCODE 62% 16.59
Diabetes DIAG 56% 41.46
Hypertensive DIAG 56% 23.94
Ulcer Drugs NDC 55% 4.96
Other Analgesics NDC 55% 4.56
Antibiotics NDC 55% 2.22
Respiratory DIAG 54% 14.80
Other Special Encounters DIAG 52% 7.98
Insulin NDC 50% 7.08
Genitourinary DIAG 49% 25.70
Antihypertensives NDC 46% 6.43
Digestive DIAG 45% 15.10
Antihyperlipidemics NDC 44% 6.39
Pharmacy REVCODE 43% 4.48
Labs Vitamin Levels Test CPT 43% 2.56
Anesthesia CPT 42% 1.93
Mental DIAG 42% 17.15
Esophagus DIAG 40% 12.62
Radiology – Diagnostic REVCODE 40% 2.07
Antidepressants NDC 39% 6.96
Drugs Requiring Specific Identification REVCODE 38% 6.54

CPT: current procedural terminology; DIAG: diagnosis; EPI: exocrine pancreatic insufficiency; NDC: national drug code; 
REVCODE: revenue code
Note: Observations were tabulated at the claim level
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Table 6b. Most Frequent Features in Patients with 80% to 90% EPI Probability 

Feature Code Type

Portion of  
Patients With ≥1 

Observations

Average Number of  
Observations for Patients 

With ≥1 Observations
Evaluation and Management CPT 100% 23.03
Pathology CPT 96% 35.25
Medicine CPT 83% 15.11
Other Pancreatic Conditions DIAG 82% 14.50
Inflammatory Conditions Of  Pancreas DIAG 81% 44.52
Special Encounters DIAG 76% 34.87
Other Symptoms DIAG 76% 35.14
Cardiovascular CPT 73% 4.35
Ulcer Drugs NDC 72% 6.03
Radiology CPT 69% 6.53
Other Analgesics NDC 67% 10.23
Symptoms (Abdominal And Pelvis) DIAG 65% 49.05
Laboratory REVCODE 65% 23.98
Musculoskeletal DIAG 63% 23.38
Digestive DIAG 58% 42.34
Metabolic DIAG 58% 33.28
Radiology Abdominal CPT 57% 4.77
Esophagus DIAG 55% 23.38
Mental DIAG 53% 34.26
Antibiotics NDC 53% 2.25
Other Special Encounters DIAG 53% 9.54
Respiratory DIAG 52% 26.16
Pharmacy REVCODE 50% 9.30
Digestive Surgery CPT 50% 4.90
Hypertensive DIAG 50% 34.33
Anesthesia CPT 49% 2.82
Genitourinary DIAG 48% 26.69
Emergency Room REVCODE 47% 5.09
Antidepressants NDC 45% 7.59
Drugs Requiring Specific Identification REVCODE 44% 8.47

CPT: current procedural terminology; DIAG: diagnosis; EPI: exocrine pancreatic insufficiency; NDC: national drug code; 
REVCODE: revenue code
Note: Observations were tabulated at the claim level

From our analysis for Model 3 of  the impact of  each feature on Gini impurity, we found that two features 
indicating pancreatic diagnoses were the most important determinates in assigning EPI probability. Table 7 
summarizes the top 30 features, which accounted for 90% of  the model’s decrease in Gini impurity.

Using the Gini impurity approach, we found that among patients with low EPI probability, the absence 
of  diagnosis codes related to conditions of  the pancreas and digestive system was the feature that 
contributed most to low-probability assignments. For example, a randomly selected patient who was 
assigned a <10% probability of  EPI did not have any diagnosis codes related to inflammatory conditions 
of  the pancreas, other pancreatic conditions, or malabsorption syndromes, and was a younger patient 
(age 37 years). Conversely, a randomly selected patient who was assigned a >90% probability of  EPI had
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been diagnosed with pancreatic conditions and malabsorption syndromes, was an older patient (age 55 
years) and had received prescriptions for ulcer drugs.

Table 7. Summary of  Model 3 Feature Importance as Measured by Each Feature’s Contribution to Decrease in Gini 
Impurity

CPT: current procedural terminology; DIAG: diagnosis; NDC: national drug code; REVCODE: revenue code
Note: The sum of  all features’ contributions to the decrease in Gini impurity = 1.00

Discussion 

EPI is a serious condition that remains underdiagnosed because of  the nonspecific nature of  clinical 
symptoms, lack of  an ideal diagnostic test, and the inability to easily identify patients with EPI using 
administrative data. We performed an analysis using machine learning techniques to identify patients in 
the MarketScan database who likely had EPI but had not been diagnosed with the condition. For the 
study population, we identified 12 likely EPI patients for every actual EPI patient, a finding that suggests 
a successful machine learning model for identifying likely undiagnosed patients despite current clinical and 
administrative barriers.
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Machine learning is still in its infancy, thus studies evaluating its value and applicability have understandably 
focused mainly on technical methodology, with leaders in the field sharing analytic techniques. In recent 
years, however, numerous studies have described clinical applications of  machine learning that might be 
accessible to healthcare decision-makers. For example, machine learning techniques have been used to 
predict a wide range of  events and outcomes in medicine, including early hospital readmissions,13 laboratory 
test results,14 treatment requirements,21 treatment success,15,22 disease progression,18 disease complications,20 
posttraumatic stress,19 suicide risk,16 graft failure after transplantation,17 optimal drug dosage,29 and adverse 
drug reactions.24 Most notably, the use of  machine learning techniques has garnered much attention in several 
major therapeutic areas, including diabetes,20,30 cancer,31 cardiology,32 ophthalmology,21,33 and psychiatry.15,34,35 
Two recent studies utilized machine learning in particularly novel ways – in one case, to evaluate the trend 
in sentiment toward papillomavirus vaccination using Twitter data,36 and in the other case, to predict swine 
movements within a regional program to improve the control of  infectious diseases in the US.37

The use of  machine learning offers practical solutions to real-world challenges in healthcare, even those 
subject to the limitations of  real-world data. Our findings showed that from a public health or market 
perspective, machine learning is a potentially useful tool to estimate the prevalence of  EPI, a condition 
known to be underdiagnosed. Indeed, the case-finding technique used in our study could be applied to 
other conditions that may be frequently undiagnosed or nearly impossible to identify in administrative 
claims data. It is important to note that administrative claims data, which are often used in real-world 
analytics, are readily available on the scale of  tens of  millions of  lives across multiple years and from 
virtually all sites of  care. A challenging future research endeavor would be to validate our model using EMR, 
a data source that is notoriously difficult to use on a large-scale basis. Although EMR data provide details 
of  patient complaints and diagnostic values, several barriers to its use should be recognized: the data are 
complex, patient information may be missing due to the use of  multiple providers who are not in the same 
system, and the consolidation and assemblage of  information from different systems and multiple sites 
pose administrative challenges.

Most of  the models we tested in our study performed relatively well; however, we anticipate that additional 
machine learning and statistical methods used in future studies could potentially improve our probability 
estimates. In fact, recent studies have examined estimating class priors in unlabeled data and improving 
models being trained primarily on positive and unlabeled data.38,39 To further improve the metrics, a greater 
number of  features – beyond the 290 used in our study – could be added to the inputs to refine the current 
EPI model, or additional populations could be included to profile for variant EPI subpopulations with mild 
to moderate pancreatic dysfunction (eg, non-insulin-dependent type 2 diabetics); examples include time 
between procedures, variables from previous years, and impressions of  causal or correlated conditions or 
treatments from clinical experts. Additional validation of  the model’s predictability could be achieved by 
following patients for several years and observing who started PERT therapy, or by mining EMR to look 
for an EPI diagnosis. Finally, an ICD-10 code for EPI, K86.81, was introduced in October 2016, thus the 
models used in our study could be revisited to use an actual EPI diagnosis code to identify EPI patients, in 
addition to using treatment with PERT to indicate actual positives for EPI.

We believe that machine learning models can be practical, cost-effective tools for organizations with the 
necessary resources, which include strong medical claims database capabilities and knowledge of  medicine, 
actuarial science, and statistics. By way of  example, our team consisted of  about a dozen individuals with 
diverse backgrounds, including actuarial, statistical, clinical, and healthcare data analytics, all of  whom 
worked substantially less than fulltime and largely completed the analysis within three months.
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We acknowledge several limitations in our study. First, although we used the standard approach of  
randomizing data into training and testing subsets, we could not verify the findings through chart audits. 
We regard the latter as an important future step and envision that an insurer could validate these findings 
through its case management efforts and further train the model to increase its accuracy. Second, the 
resources dedicated to running the models – both time and computer resources – could be constraints for 
organizations trying to apply our approaches. A small insurer, for example, may not have the resources to 
evaluate or implement the model. Third, the usual limitations of  administrative claims data also applied 
to our study. Claims data, although comprehensive and adequate in many ways, are subject to variation in 
provider coding practices and inaccuracies. The latter limitation, however, is not unique to our study, but 
rather reflects the status of  real-world data that any organization implementing a case-finding technique 
would encounter.

Conclusions

Administrative claims data, although readily available on the scale of  tens of  millions of  lives, lack many 
of  the clinical details that can be found in EMR; however, obtaining large-scale EMR data has proved to 
be difficult. Machine learning approaches applied to administrative claims data offer a fast and practical 
approach to researching important healthcare challenges.  

The high predictive power of  our EPI model shows that applying machine learning techniques to 
administrative claims data can offer practical and efficient solutions to understanding real-world healthcare 
challenges. Although definitive claims about the implications of  our findings on clinical practice cannot 
be made, we submit that our study has demonstrated the feasibility and potential value of  using machine 
learning as an efficient strategy for predicting EPI in undiagnosed patients and perhaps will inspire future 
researchers to improve our probability estimates and extend our findings.
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Technical Appendix

Python Code

The machine learning algorithms produced for the Baseline model and Models 1-3 can be found at: https://
github.com/milliman/EPI_Machine_Learning “Applying Machine Learning Techniques to Identify 
Undiagnosed Patients with Exocrine Pancreatic Insufficiency”. 

Hierarchy of  EPI-related Conditions

To generate an enriched study population of  individuals who were moderately prone to EPI but did not 
have conditions associated with a very high likelihood of  EPI, we constructed a hierarchy of  EPI-related 
conditions; see Table A1. We used this hierarchy to include or exclude individuals from the study population. 
To be identified with most conditions in the hierarchy, a patient needed to have ≥ 1 acute inpatient or 
observation claim or ≥ 2 non-acute inpatient, outpatient, Evaluation & Management, or emergency 
department claims on different dates of  service. For some conditions, we used a loosened criterion because 
the seriousness of  these conditions made “rule out” coding unlikely. For the latter conditions, a patient 
needed to have only one acute inpatient or observation claim or one non-acute inpatient, Evaluation & 
Management, outpatient, or emergency room claim in order to be flagged with the condition. 

Methods Used to Address Data Issues

If  we assumed that the unlabeled data were negative, we created imbalanced data. Table A2 presents the 
approaches we used across the 27 models to treat imbalanced data in our model. Of  the six approaches 
listed, only downsampling and repeated random subsampling were used in the final models. 

Table A3 describes the approaches we used to handle unlabeled data. 

Approaches Used to Validate Models

We considered three validation approaches in our study; see Table A4. All of  these methods partitioned the 
data into a training subset and a testing subset. Candidate models were developed using the training subset, 
and the models were compared based on their performance metrics. The best model was applied to the 
testing subset to produce performance metrics. 
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Table A1. Hierarchy of  EPI-related Conditions

Rank Condition Code
1 Cystic Fibrosis 277.0X 
2 Pancreatic Cancer 157.0 – 157.9, 230.9
3 Radical Pancreatic Surgery
3.1 Radical Pancreaticoduodenectomy, Radical Subtotal 

Pancreatectomy, Total Pancreatectomy
52.7; 52.53; 52.6

3.2 Partial Pancreatectomies: Proximal, Distal, Not Elsewhere 
Classified (L)

52.51; 52.52; 52.59 

3.3 Other Pancreatic Surgery (L) 52.2X, 52.3 and 48105 – 48155 (CPT)
3.4 Other pancreatic neoplasms, not necessarily treated surgically (L) 211.6, 211.7, 251.8, 251.9
4 Inflammatory Conditions of  Pancreas: Acute Pancreatitis, Chronic 

Pancreatitis (L)
577.0; 577.1 

5 Other Pancreatic Conditions (L) 577.8, 577.9
6 Malabsorption Syndromes: Celiac Disease, Tropical Sprue, Other 

Malabsorption Syndromes, Whipple’s Disease
579.0; 579.1; 579.2 – 579.9; 040.2

7 Bariatric Surgery: Laparoscopic and Bariatric Surgery, Open 43644 – 43648, 43770 – 43775 (CPT); 
43842 – 43846, 43886 – 43888 (CPT)

8 Inflammatory Bowel Diseases
8.1 Irritable Bowel Syndrome 564.1 
8.2 Ulcerative Colitis 556 
8.3 Crohn’s Disease 555 
9 Diabetes 250.XX 
9.1 Insulin takers
9.2 Non-insulin takers
10 HIV (excluding asymptomatic patients) 042 
11 All other

CPT: current procedural terminology; EPI: exocrine pancreatic insufficiency.
Note: All codes are International Classification of  Diseases, Ninth Revision, Clinical Modification codes (ICD-9-CM), unless 
otherwise specified. Patients with conditions shown in bold font were excluded from the study population, as it is highly likely that 
affected patients had already been diagnosed with EPI, and we did not want the characteristics of  these patients to overshadow 
the characteristics of  less EPI-prone patients. Patients with conditions shown in italicized font were excluded from the model due 
to their low association with EPI. The loosened criterion was applied to all conditions with an (L) designation.
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Table A2. Treatment of  Imbalanced Data

Approach Description Application in 
Final Models

Downsampling

This method randomly selected unlabeled data for use as labeled negative 
to achieve a targeted balance between labeled positive and labeled negative 
data. Between 2000 and 15 000 unlabeled cases were randomly chosen to be 
combined with the actual negative cases.

 Models 1-2 only

Repeated random 
subsampling

This method assigned all unlabeled cases as negative and partitioned them into 
subsamples with a predetermined ratio per subsample between majority and 
minority cases. Multiple training subsets using the subsampled negative cases 
and all positive cases were used to create an ensemble of  models. A majority 
vote of  the models was used to determine the output of  the ensemble.* 

Model 3 only

Class weighting

This method weights the minority class (eg, positive cases) to be more 
important relative to the majority class (eg, negative cases). Many machine 
learning techniques can accept a class weighting scheme to balance the 
ratio of  classes. For example, if  there are 100 majority class examples and 
10 minority class examples, a “balanced” weight would be 1.0 and 10.0, 
respectively, which would lead to each class having a total weight of  100.0.

None

Subsample 
balanced weight

This method weights the minority class more heavily relative to the majority 
class, just as the class weighting method does, but separately for every 
bootstrapped tree in a random forest technique. For example, Tree 1 may have 
a sample of  90 negatives and 20 positives, so the class weight of  the positives 
is 4.5 and that of  the negatives is 1.0. Tree 2 may have a sample of  105 
negatives and 5 positives, so the class weight of  the positives would be 21.0 
and that of  the negatives would be 1.0 for that specific tree only. Every tree is 
independently weighted before being trained based on the bootstrap sample 
of  cases.

None

Bootstrapped 
downsampling

This method modifies the normal random forest technique to downsample 
every bootstrap sample for every decision tree in the random forest to a 
specified minority to majority class ratio. For example, if  there are 100 
majority class examples and 10 minority class examples, and the target 
ratio is 0.5, every tree in the random forest would be assigned a sample 
of  10 minority class examples with 20 majority class examples. From that 
subsample, a bootstrapped population of  30 would be chosen to train that 
specific tree. This process is repeated for every tree in the random forest. The 
bootstrapped downsampling method is similar to a “balanced random forest.” 
** 

None

Synthetic minority 
oversampling 

technique 
(SMOTE) 
resampling

This method assigns all unlabeled cases as negative and resamples positive 
data to achieve a targeted balance between labeled positive and labeled 
negative cases.  SMOTE resampling attempts to achieve a more distinct 
classification between positive and negative data.***

None

*Repeated random subsampling has been shown to be effective in dealing with imbalanced data in the context of  a random forest 
approach to medical outcomes research.2 
**A balanced random forest approach balances the positive class and negative class in every tree of  the random forest.3 

***SMOTE is an approach that oversamples cases in the underrepresented class.4 
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Table A3. Treatment of  Unlabeled Data

Approach Description Application in 
Final Models

Ignored unlabeled data All unlabeled data were ignored; only labeled positive and labeled 
negative data were used during the training of  models.  Baseline only

Assumed unlabeled data 
to be negative and ignored 

actual negative cases

All “actual negative” cases were ignored during the training of  
models; unlabeled data were assumed to be negative. In the literature, 
this method is often called positive-unlabeled (PU) learning.*

Models 1-3 only

*PU learning is an alternative approach in which the study population consists primarily of  unlabeled and actual positive cases.1

Table A4. Approaches Used to Validate Models

Approach Description Application in 
Final Models

80/20 Split 
Validation

The simplest form of  validation is to split the data into a training subset and 
a testing subset. In our study, we used an 80%/20% ratio of  training data to 
validation data in the baseline model.

 Baseline only

Stratified K-Fold 
Cross Validation

Using stratified K-fold cross validation, the training subset was is divided into 
multiple training and validation subsets to estimate how the models would 
generalize to new unseen data. The data are divided into “K” folds (eg, 3 or 5), 
whereby each fold is representative of  the whole dataset in terms of  percentage 
of  cases that are unlabeled, negative, and positive. “K” models with the same 
hyperparameters are trained, such that, where the training data for each model 
leaves one fold (ie, the validation fold) out of  training so that the metrics are 
computed on the validation fold after the training is complete.

None

(K x N) Nested 
Cross Validation*

(K x N) Nested cross validation is the method used in Models 1-3. (K x N) 
Nested cross validation consists of  two steps: outer cross validation and 
inner cross validation. In the outer cross validation step, the training subset is 
split into “K” folds (groups). “K-1” folds are used to train the model on the 
parameters, and the one remaining fold acts as the validation set. This process is 
repeated until every fold acts as the validation set one time. Within the training 
folds assigned by the outer cross validation step, the folds are further split into 
“N” folds in the inner cross validation process. “N-1” folds in the inner cross 
validation step are used to tune the parameters, and the one remaining fold 
acts as the validation set. The hyperparameters are optimized by selecting the 
best performing set, as measured by the average performance metrics over “N” 
validation sets through the inner cross validation. The performance metrics 
of  the model are then calculated in the validation set through outer cross 
validation. The inner cross validation process is repeated separately over the 
“K” outer cross validation splits. When comparing multiple machine learning 
model types along with tuning hyperparameters for each technique, using nested 
cross validation has been shown to produce unbiased, accurate generalization 
estimates that can be used to responsibly compare models and model types.5 In 
our study, we used 3 for both “K” and “N”.

Models 1-3 only

Note: When comparing multiple machine learning model types or tuning hyperparameters, nested cross validation has been 
shown to produce unbiased, accurate generalization estimates that can be used to responsibly compare models and model types.5


