
6 | APRIL 2018 PREDICTIVE ANALYTICS AND FUTURISM

Parallel Cloud
Computing: Making
Massive Actuarial Risk
Analysis Possible
By Joe Long and Dan McCurley

This article will walk through a cloud use case where we were
able to cut a three- month machine learning exploration
project1 down to just under four days using a mixture of

open source tools and the Microsoft Azure cloud. This translates
to an approximate 25- fold reduction in serial compute time for
such a task. We will give a short introduction to the cloud while
sharing our experience of managing the pool of data- crunching
machines that ran our analysis. In closing, we will discuss lessons
learned and ways to improve the plan of attack, as well as touch
on the importance of state management to aid in efficiency and
the reproducibility of results when using the cloud.

SETTING THE STAGE FOR THE CLOUD
Machine learning is spreading quickly across many industries
and is showing promising results for making better predictions
and automating manual tasks. However, with increases in data
size and the greater power of more complex algorithms, the
computing resources it takes to crunch the numbers increase as
well. Nowadays, it may take days or months to conduct an anal-
ysis on a single machine. There is a solution, though: Thanks
to advances in cloud computing, the phrase “the sky’s the limit”
has a whole new meaning as we now have the ability to speed up
time if the reward outweighs the cost of doing so.

In order to utilize the time- saving efficiencies of the cloud, a
large computational process must be able to be broken down
into independent tasks that can be run in parallel. Not every
process fits this mold. Some processes rely on a series of sequen-
tial calculations, where each calculation is dependent on the
ones that precede it. An example of such a process would be
calculating a single sequence of time- dependent events, which
would not be a good use case for the parallel compute capabili-
ties of the cloud.

Machine learning, however, is full of many processes that can
be broken down into independent tasks calculated in parallel,

which can then be merged together after all independent cal-
culations have been completed. A good example of this would
be an ensemble method such as the random forest algorithm,
which is used to develop a predictive model comprised of
hundreds to thousands of independent decision trees that are
averaged together to produce a single prediction. Another
easily parallelizable example is the Monte Carlo simulation.
These algorithms are prime candidates for the massive parallel
computing abilities of the cloud. Almost all supervised learn-
ing algorithms use some kind of resampling technique (e.g.,
bootstrapping, cross- validation) to optimize the bias- variance
trade- off for generalization. Most resampling techniques are
embarrassingly parallel and can benefit greatly from cloud
computing.

In our case, we used the cloud to help with a large machine
learning exploration project, which was comprised of many cal-
culations done in open source R. Our initial exploration started
with a single heavy- duty, bare- metal machine that could handle
traditional memory and compute intensive tasks. We quickly
discovered that in order to run the full exploration analysis we
mapped out, we would miss our deadline. Our initial estimate
was that the full analysis—when run sequentially on our in-
house machine—was expected to take 90 days of continuous
computer run time. However, with some manual effort to break
the analysis into semi- equal chunks, we estimated we could run
it in Microsoft’s Azure cloud and complete all of our calculations
in less than a week. This approximately 25- fold reduction in
serial compute time to run our analysis gave us more time to
digest the results, giving us the ability to run further variants of
our initial exploration plan. More variants can equal better value
to the client.

THE MAGIC BEHIND THE CLOUD
“There is no cloud—it’s just someone else’s computer” is a
common meme used to explain cloud services. While this phrase
helps one understand the basic idea of the cloud, it does not
fully recognize the great capabilities and flexibilities of the
modern cloud infrastructure. The concept of the cloud dates
back to the 1960s and is commonly attributed to J.C.R. Lick-
lider and John McCarthy.2 Joseph Licklider is credited for his
core concept of a Galactic Network or “Network of Networks”
and John McCarthy for theorizing utility computing. These
ideas reached commercial viability in 2002 when Amazon Web
Services (AWS) started providing web- based, pay- as- you- go
services to companies to store data and run applications. Cur-
rent major competitors to AWS include Microsoft Azure and
Google Cloud.

All of these providers offer similar ways to access their resources.
It is helpful to think of these resources in three main categories:

 APRIL 2018 PREDICTIVE ANALYTICS AND FUTURISM | 7

1. Infrastructure as a service (IaaS) creates a virtual data center
in the cloud similar to what your company would have in
an information technology (IT) climate- controlled room. It’s
easy to adopt but expensive to run.

2. The second way to access cloud resources is through platform
as a service (PaaS). In this method, the cloud provider takes
care of storage and computation and provides a platform
to do a focused type of work. If you want a database that
is always available, but don’t want to deal with any mainte-
nance or tuning, this is an excellent solution.

3. Thirdly, software as a service (SaaS) allows a company to build
a custom solution that can only exist in a cloud environment.
Salesforce, Office 365 and G Suite are examples of SaaS.

Viewed in this context, our computing project was an example
of an IaaS. But by the end of our exploration we had migrated
much closer to a PaaS solution. The actual difference can get
quite fuzzy.

THE LEARNING CURVE
Once we realized on- premise calculations would take too long, we
turned to the task of determining how many (and what capacity)
computers would be needed for a cloud solution. After a period
of research on best approaches for parallelizing our process in the
cloud, we estimated that 63 virtual machines (VMs) should be
able to handle the work in a reasonable time frame. Each machine
had eight cores and 56 gigabytes of RAM, giving us a total of over
500 cores and 3,500 gigabytes of RAM at our disposal. For this
project, we chose to provision the machines with Windows as the
operating system due to familiarity, but we note this costs about
50 percent more in license fees than an equivalent Linux VM. We
wrote PowerShell scripts to automate cloning and administration
of the machines. Later in this article we will describe a new tool
that makes things much easier (and transitions this solution from
pure IaaS to something closer to PaaS). At the time of our proj-
ect, this setup had a sticker price of less than $2 per hour to run
each virtual machine of this size in Azure.

Our first step was creating the initial VM and then installing R
and all the R packages we would need to run our analysis. Once
we had our initial VM configured, we created 62 clones of it
using the Invoke- Parallel PowerShell script Warren Frame dis-
cussed in his “Invoke PowerShell on Azure VMs” article,3 which
had some other helpful pointers we used along the way.

Now we had 63 VMs available to process data but hit a roadblock.
How do we launch our R scripts on the VMs in a coordinated
way? For this, we ended up using another script by Warren
(Invoke- AzureRmVmScript) to invoke commands remotely on
the VMs. We wrapped these commands in the Invoke- Parallel

script to kick off the R scripts simultaneously across the VMs.
An additional script served the purpose of deallocating VMs
after the R scripts finished running to measure progress and
limit costs. Allocated VMs charge per minute and deallocated
VMs carry no compute charges.

Once all the VMs completed their tasks we collected our data
and analyzed our results. In the end we ran a total of 90 days’
worth of parallel compute time across the VMs, with the longest
VM running for a total of three-and-a-half days at a total cost
of around $3,000. The equivalent cost of buying and setting
up similar machines would have required weeks of setup and
tens of thousands of dollars of hardware purchase for the same
result. Of course, the cloud approach also required a fair amount
of time spent crafting and debugging the PowerShell scripts,
which adds significant soft costs in addition to the hard costs.
Additionally, when using an IaaS solution over time there would
also be the ongoing costs associated with keeping the VM image
up- to- date with the latest security updates.

THINGS KEEP ON EVOLVING
After completing our first large run in the cloud, we found that
Microsoft was working on an R package simultaneously that
automated many of the tasks we had done in PowerShell. This
R package is called doAzureParallel, leveraging an Azure service
called Batch. The package allows a user to create a pool of VMs
in the Azure Batch service with a few lines of R code and then
register it as the parallel back end for the R foreach package. If
you are already familiar with the R foreach package then mak-
ing the transition to using doAzureParallel is done simply by
running some code that creates the pool in Azure Batch. Any
existing foreach code using the %dopar% function can then be
used as is.

Azure Batch allows you to easily launch a pool of Linux VMs,
which as we mentioned earlier is much more cost- effective than
using a pool of Windows- based VMs. The auto scaling features
of Azure Batch allow dynamically scaling up or down the num-
ber of VMs in a pool based on the demand of the tasks you are
running. Another option is to use a mix of dedicated or low-
priority VMs in a pool. Cloud providers make excess compute
capacity available at steeply discounted rates with the caveat that
these machines can be interrupted by those willing to pay at the
higher rate. If this happens, the current task you are running
gets canceled and reassigned on another low- priority machine.
Therefore, it is recommended to only use the low- priority
machines if you have short- running tasks or your calculation
can progress despite multiple restart attempts.

One recently added feature of doAzureParallel worth noting
is its ability to seamlessly run R inside a Docker container on
the VMs within your pool. This is similar to how we cloned a

8 | APRIL 2018 PREDICTIVE ANALYTICS AND FUTURISM

Parallel Cloud Computing: Making Massive Actuarial Risk Analysis Possible

custom VM image in our initial IaaS approach. It allows use of
a prespecified environment that keeps R versions and packages
in sync, which ensures reproducibility of results. The added
benefit with the doAzureParallel Docker container approach is
that now you can rely on Azure Batch to create up- to- date VMs
each time you run an analysis, ensuring that you have the latest
security updates. By default, doAzureParallel uses the “rocker/
tidyverse:latest” image that is developed and maintained as part
of the rocker project.4 However, you can also specify a custom
Docker image, which allows you to lock in a version of R if you
are concerned about duplicating results long term.

In our case, doAzureParallel has helped us move our initial
IaaS approach to more of a PaaS approach. Now we can rely
on doAzureParallel to maintain the administration work of cre-
ating pools of VMs with up- to- date security updates, which are
running our prespecified environments. Using such solutions
allows users to focus more on the analysis they are trying to con-
duct rather than spending the time managing the infrastructure
it runs on.

LESSONS LEARNED AND RECOMMENDATIONS
Taking a look back at our journey in the cloud, we have some
final recommendations for those looking to get the most out of
these exciting new tools.

• If you plan on using the cloud for an analysis in R, check
out the well- documented doAzureParallel package. Even if
you don’t plan on using R for analysis you might find some
workflows that help with other languages as well.

• The tools cloud providers have are constantly evolving and
iterating, and it is essential to be aware of what new tools are
made available. For example, moving from the highly manual
cloning of machines to Azure Batch for automated compute
pool creation was revolutionary and much easier to use.

• We highly recommend the use of Docker containers or some
other state management when conducting work in R or any
other language if you need repeatable results over a long
span of time.

• Finally, we recommend using Linux- based VMs over Win-
dows if your task allows you to, as it can provide a welcome
cost savings. Also investigate the use of low- priority VMs (or
spot pricing in the AWS world) if your workflow supports
short- running tasks.

Table 1 gives an estimate of potential cost reductions we could
have achieved if we were to rerun our analysis applying these
recommendations using the doAzureParallel package. For

comparison, we have also estimated the cost of using AWS as
the cloud provider. Note that these are estimated costs as of Jan.
23, 2018; pricing may vary in your region or the contract you
have in place with Microsoft Azure or AWS.

As you can see, the cloud is more than just someone else’s com-
puter. It’s an ecosystem of resources that can be leveraged to
explore ideas and complete tasks that were once unfeasible to
achieve with the local computing resources of the past. ■

Joe Long is an assistant actuary and data
scientist at Milliman. He can be reached at
joe.long@milliman.com.

Dan McCurley is the Cloud Solutions Architect at
Milliman. He can be reached at dan.mccurley@
milliman.com.

ENDNOTES

1 A research and development project conducted by the Milliman Advanced Risk
Adjusters™ (MARA™) product group. See http://www.millimanriskadjustment.com
for more information about MARA.

2 Mohamed, Arif. A History of Cloud Computing. Computer Weekly.com, March 2009,
http://www.computerweekly.com/feature/A-history-of-cloud-computing (accessed
Feb. 1, 2018).

3 F., Warren. Invoke PowerShell on Azure VMs. Rambling Cookie Monster, http://
ramblingcookiemonster.github.io/Invoke-AzureRmVmScript/ (accessed Feb. 1, 2018).

4 Tan, J.S. Scale Up Your Parallel R Workloads with Containers and doAzurePa-
rallel. Revolutions, Nov. 21, 2017, http://blog.revolutionanalytics.com/2017/11
/doazureparallel-containers.html (accessed Feb. 1, 2018).

Table 1
Potential Cost Reductions

VM Option

Total
Compute

Hours

Price Per Hour1 Total Cost

Azure2 AWS3 Azure AWS
Windows OS 2,151 $1.17 $1.05 $2,516.67 $2,258.55

Linux OS 2,151 $0.78 $0.67 $1,677.78 $1,441.17

Linux OS with
low priority4

2,151 $0.14 $0.07 $301.14 $150.57

1. Estimated prices from Microsoft Azure and AWS online pricing for VM compute charges
only. Does not Include storage or data transfer prices, which can become meaningful if
not managed efficiently.

2. Azure A10 VM with eight cores and 56 gigabytes of RAM in the North Central U.S. region.
3. AWS r.3.2xlarge VM with eight cores and 61 gigabytes of RAM in the U.S. East (Ohio)

region.
4. Assumes tasks were run without the VMs being preempted.

