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Background 
In early December 2017, the National Association of Insurance 
Commissioners (NAIC) released proposed revisions to the 
existing U.S. variable annuity (VA) statutory framework. These 
revisions were promulgated as redline updates to the existing 
Actuarial Guideline 43 (AG-43) and Risk Based Capital (RBC) C3 
Phase II (C3P2) instructions, paving the way for VM-21 of the 
Statutory Valuation Manual (VM), Requirements for Principle-
Based Reserves for Variable Annuities. After an exposure period 
in early 2018 to allow for comments from industry participants, 
regulators, and interested parties, the Variable Annuity Issues (E) 
Working Group (VAIWG) of the NAIC adopted almost all of the 
recommended changes outlined in the redline instructions.  

While these revisions have been broadly agreed upon by the 
NAIC, a final set of regulatory instructions for VM-21 is still 
pending, with the responsibility assigned to the VM-21 Report 
Drafting Group. New updated redline instructions are exposed 
publicly on a piecemeal basis, inviting comments and feedback 
from practitioners and interested parties.1 The working 
expectation is that the final version of VM-21 will be formally 
adopted at the NAIC Summer meeting in August 2019, for a 
January 1, 2020, effective date. Under the new VM-21 
framework, the Aggregate Reserve is now the sum of the 
Conditional Tail Expectation 70 Amount (CTE Amount) and the 
Additional Standard Projection Amount, where the latter term is 
determined using the Standard Projection. 

The Standard Projection 
The VM-21 Standard Projection is essentially a complete 
overhaul of the existing AG-43 Standard Scenario framework. It 
can be calculated using either the Company-Specific Market Path 
(CSMP) method or the Conditional Tail Expectation with 
Prescribed Assumptions (CTEPA) method. The CSMP method 
uses (at least) 40 prescribed economic scenarios while the 

CTEPA method uses the same (number of) economic scenarios 
as the CTE Amount calculation (common practice is to use at 
least 1,000 scenarios).  

Companies might find the CTEPA method desirable because it uses 
the same real-world economic scenario set as under the CTE 
Amount (although of course with prescribed assumptions) and so 
provides an intuitive and commensurate comparison. In particular, 
we note that using the CSMP method creates a dependency 
between the CTE Amount and the Standard Projection because the 
former must be determined first before the latter can be calculated. 

Withdrawal Delay Cohort Method 
One of the more challenging (and key) components of the 
Standard Projection is the Withdrawal Delay Cohort Method 
(WDCM), which is a prescribed approach for determining the 
timing of policyholder election for policies with either hybrid 
guaranteed minimum income benefits (Hybrid GMIBs)2 or 
guaranteed minimum withdrawal benefits (GMWBs). The WDCM 
applies in both the CSMP and CTEPA methods. To be in scope for 
the WDCM, policies must be either nonconforming (meaning they 
have taken a withdrawal in the policy year occurring coincident with 
the valuation date, and this withdrawal was in excess of the 
GMWB’s guaranteed annual withdrawal amount or the GMIB’s 
dollar-for-dollar maximum withdrawal amount) or non-withdrawers 
(meaning that they have not started taking withdrawals). 

Under the existing AG-43 framework, the Standard Scenario 
assumes that the exercise of any living benefits such as GMIBs 
or GMWBs occurs at the earliest available opportunity that is 
consistent with contractual provisions. 

In contrast, the WDCM under VM-21 defines a prescriptive process 
for determining a distribution of possible election cohorts for each 
policy in scope, each with its own weight. The cohorts simulate 
each potential age of starting systematic withdrawals. In order to 
determine the election distribution, the Guaranteed Actuarial 
Present Value (GAPV) concept, as prescribed under VM-21, is   

1 This article has been developed using the updated VM-21 redline that was 
exposed in early March 2019. The reader is cautioned that, to the extent that 
the final version of the instructions is different from this redline, certain content 
in this article may need to be revised. 

2 A Hybrid GMIB policy is a policy with both guaranteed growth (such as with a 
rollup or doubler) and dollar-for-dollar partial withdrawal reductions in the 
GMIB benefit base. 
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used to calculate the prospective withdrawal value of the rider to 
the policyholder at each potential individual withdrawal age. 

The main steps in the WDCM are outlined below: 

¡ For each potential initial withdrawal age (from issue to attained 
age 120, subject to contractual provisions), compute the 
GAPV assuming the policyholder elects to take withdrawals at 
that age. This will produce a set of GAPVs. 

¡ Apply certain prescribed transformations and normalizations to 
this set of GAPVs to develop a from-issue cumulative 
distribution function (CDF), reflecting shocks as necessary.3 
This CDF defines a specific weight for the withdrawal cohort 
corresponding to each initial withdrawal age from issue. 

¡ A “never withdraw” cohort is also defined, whose weight varies 
by rider type and tax status. 

¡ Given a valuation date, any withdrawal cohorts corresponding 
to initial withdrawal ages occurring prior to that date are 
discarded and the remaining weights are rescaled to produce 
a revised CDF (call this the “rescaled CDF”). 

The key drivers in this process are those that underlie the GAPV 
calculation, namely the rider benefit base mechanics, the payout rate 
for the GMWBs and/or Hybrid GMIBs under consideration, the 
prescribed Standard Projection mortality, and the discount rate (3%). 
The most recent redline instructions stipulate that the CDF is 
calculated once for a set of policies with the same combination of 
issue age, rider type, and tax status. For the purposes of this article, 
we refer to this combination as the “WDCM cell key.” In practice, 
there may be legitimate reasons to expand the WDCM cell key 
definition. For example, gender is a key item that should also be 
considered (because mortality rates will vary by gender). Moreover, 
the payout rate may vary by joint life status or rider generation. 

Theoretically, policies with the same WDCM cell key should 
produce the same from-issue CDF even if their benefit bases on 
the valuation date are different, because the associated GAPVs 
should simply scale and the weights would renormalize to the 
same values. One could even calculate the CDF using an arbitrary 
(but non-zero) benefit base amount. Accordingly, for existing 
policies the calculation of the from-issue CDF is intended to be a 
one-time process—once calculated for a given WDCM cell key, the 
weights are fixed and do not need to be recomputed in the future.4 
The practitioner need only compute new weights for new business 
issued that have different WDCM cell key combinations. 

While the WDCM process is theoretically very appealing, in 
practice the run-time associated with splitting the in-force file into 
many cohorts (some of which may be assigned very small 
weights) can be very challenging, particularly under the CTEPA 
method. The full WDCM cohort file record count is likely to be 
many times greater than that of the original in-force file.  

The redline instructions provide some allowance for discarding 
additional cohorts to mitigate the computational burden, so long 
as this decision has been disclosed. The specific language 
indicates that individual withdrawal age cohorts may be 
discarded or a small number of withdrawal cohorts may be 
assigned to each contract via random sampling.  

Discarding cohorts to relieve the computation burden without loss 
of accuracy (relative to results produced using the full WDCM 
cohort approach) requires practitioners to engage in some 
analysis and testing, ideally before VM-21 becomes effective. 
There are a number of approaches that companies might take. 
For example, companies could (a) specify a maximum number of 
cohorts (and map cohorts with the smallest weights to those with 
the largest weights), (b) collapse all the cohorts for an in-force 
policy down to a single cohort by using the weighted average 
deferral time across all cohorts for that policy, or (c) similar to (b) 
but using the median deferral time. Other reasonable approaches 
may prove to be suitable as well.  

As noted in the redline instructions, one possible route 
practitioners can take is to use a random draw to collapse all 
cohorts to a single cohort for each in-force policy. The process 
would involve using a robust random number generator to 
produce a random draw on the interval 0 to 1 for each in-force 
policy. This value would be compared to the rescaled CDF 
produced by the WDCM process, thereby randomly selecting a 
future election time and modeling each in-force policy using a 
single cohort with that particular election time. The advantage to 
this approach is that the in-force file record count for the 
randomized run is the same as the pre-WDCM version (i.e., the 
original in-force file). For proof of principle, the practitioner should 
verify that the results produced using both the random sampling 
approach and the full WDCM cohort approach are not only 
similar, but that repeated random trials produce stable results. 
This test should be performed at the onset of adopting the 
random sampling approach, and may also need to be carried out 
at future intervals (such as to support disclosure of the approach 
in the year-end Actuarial Memorandum).5 It should be noted that 
a number of companies already employ random sampling 
methods in their CTE Amount calculations. 

 

3 For applicable policies, these prescribed shocks correspond to the end of the rollup 
period and/or required minimum distributions after age 70 for qualified plans. 

4 Other than for the rescaling as the valuation date changes. Also, if there is a model 
correction/refinement that impacts the key drivers outlined above, then the CDFs 
need to be recalculated. An earlier version of the redline-specified mortality 
improvement to the valuation date for the GAPV, which would have resulted in 
varying CDFs over time (if they have been recomputed at future valuation dates). A 
recent change to the redline to reflect improvement for the GAPV to December 31, 
2017 (rather than the valuation date) avoids this situation. 

5 Another test that can be performed to make sure that the functionality is 
correct would be to run both approaches and force all policies/cohorts to use a 
single election time. One would expect both approaches to produce near-
identical results. 
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Statistical theory behind random 
sampling 
In defense of the random sampling approach outlined above (in 
which a single delay cohort is randomly selected for each policy) 
we argue that the Greatest Present Value of Accumulated 
Deficiencies (GPVAD) calculated by randomly sampling the 
election time for each in-force policy will converge to the true 
GPVAD within an economic scenario for large in-force sizes, 
where the true GPVAD is that which would be calculated by 
using the full WDCM cohort in-force file. We start by showing 
convergence of the policy-level accumulated product cash flows, 
and we expand that to the convergence of the GPVAD. 

Probability theory suggests that when you sample values from a 
population, the ratio between the sample standard deviation and 
the sample sum shrinks as the sample size increases. The 
sample standard deviation here can be thought of as an “error,” 
the discrepancy between our GPVAD estimate and the true 
GPVAD. As such, even though larger in-force sizes will generally 
lead to larger errors, the errors will actually become smaller as a 
proportion of total GPVAD. 

This theory extends naturally to WDCM cohort sampling—which is 
effectively a form of stratified sampling—where exactly one outcome 
is randomly selected for each policy. We first conceptualize the effect 
using the policy-level accumulated product cash flows. Each policy 
has a theoretical variance of possible accumulated product cash flow 
values, based on the randomness of which WDCM cohort is 
sampled. Because WDCM delay cohorts are sampled independently 
for each policy, the variance of the sum is equal to the sum of the 
variances, shown mathematically below:  

𝑉𝑎𝑟 $%𝑋'
(
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where	X4 = sampled	cash	flow	value	for	iAB	policy	
and	n = in − force	size 

As such, the variance of the sum increases linearly with the in-
force size, implying that the standard deviation of the sum 
increases at a rate proportional to the square root of the in-force 
size. In other words, the sum is growing at a linear rate but the 
standard deviation, or “error,” is growing at the rate of the square 
root, which is much slower. 

In order to illustrate this relationship, we started with nine sets of 
in-force files that contained samples of between 5,000 and 
45,000 policies. Each of these in-force files contained policies 
that were cohorted under the prescribed full WDCM approach 
with accumulated product cash flow results pre-calculated for 
each cohort. For each of these in-force files, we randomly 

sampled distinct sets of cohorts 1,000 times to generate a 
distribution of potential total accumulated product cash flows.  

In Figure 1, the blue line represents the ratio of the standard 
deviation of the random samples to the total accumulated product 
cash flows for each in-force file size, while the orange line 
represents the ratio that we would expect to see if the square 
root principle held. The graph shown in Figure 1 explains the 
phenomenon nearly perfectly. In other words, the sample error—
as measured by the sample standard deviation—will shrink at a 
rate proportional to the square root of the in-force size. 

FIGURE 1: RATIO OF STANDARD DEVIATION TO TOTAL ACCUMULATED 
PRODUCT CASH FLOWS BY IN-FORCE SIZE 

 

While the probability theory discussed above explains the variation 
for sums of policy-level cash flows quite well, it does not cover how 
convergence of a policy-level cash flow implies convergence of the 
GPVAD. Intuitively, the calculation of GPVAD implies additional 
aggregation, both within and across time steps, and aggregation 
generally leads to lower variances. For example, this concept of 
aggregation is used to diversify portfolios and reduce risk. The 
case study in the next section supports the hypothesis that the 
relative variation in GPVAD across random samples is lower than 
the relative variation of policy-level cash flows, suggesting that 
using policy-level cash flows is a conservative approach to 
determining whether an in-force size is large enough. 

WDCM case study 
For our case study we implemented both the full WDCM cohort 
approach and a random sampling approach for a block of roughly 
52,000 VA policies with guaranteed lifetime withdrawal benefits 
(GLWBs) and $6.5 billion in account value in-force. These GLWB 
policies have an annual account value ratchet, a 5% benefit base 
rollup for the first 10 policy years, and a maximum annual withdrawal 
amount ranging from 3% to 6% by attained age. On implementation 
of the full WDCM cohort approach, the in-force size increased by an 
order of tenfold to just under 590,000 cohort records. 
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We performed a random sampling of the withdrawal election 
times for the block of GLWB policies and compared the resulting 
distribution against that produced by the full WDCM cohort 
approach in Figure 2 below. For the random sampling approach, 
the y-axis represents the total policy count for each year of 
election. For the full cohort approach, the y-axis represents the 
sum of the probability weights across all cohorts assigned for 
each election time. Because the sum of probability weights is 
equivalent to the expected value of each election time, this gives 
us a metric against which we can compare the sample counts. It 
is immediately evident from Figure 2 that the shape of the 
distribution is very similar between the two approaches (as 
expected, due to the law of large numbers and the probability 
theory discussed earlier). 

FIGURE 2: DISTRIBUTION OF WITHDRAWAL ELECTION TIMES (POLICY YEAR) 

 

Next, we projected the aggregate cash flows for both approaches 
using the prescribed VM-21 assumptions for the Standard 
Projection under a single adverse tail-end economic scenario. 
We plotted the movement of aggregate free surplus across all 
projection periods under both approaches and noted the near 
exact match (Figure 3). In addition to that, the table in Figure 4 
shows that the dollar difference in free surplus between both 
approaches is minimal at various projection quarters. 

FIGURE 3: FREE SURPLUS (IN $) ACROSS PROJECTION QUARTERS FOR 
SINGLE ADVERSE TAIL-END SCENARIO 

 

FIGURE 4: FREE SURPLUS (IN $) AT VARIOUS PROJECTION QUARTERS FOR 
A SINGLE ADVERSE TAIL-END ECONOMIC SCENARIO 

 
PROJECTION 
QUARTER 

FREE SURPLUS 

FULL COHORT 
APPROACH 

RANDOM 
APPROACH % DIFFERENCE 

1 52,804,571 52,804,774 0.0% 

25 794,526,441 794,578,862 0.0% 

50 1,064,869,166 1,064,191,842 -0.1% 

75 525,080,878 527,427,921 0.4% 

100 (130,906,609)  (124,967,114) -4.5% 

120 (911,403,069)  (901,397,103) -1.1% 

From the table of results in Figure 5, the GPVAD results between 
the full WDCM cohort approach and the random sampling 
approach are very close for three tail-end economic scenarios. In 
order to validate the stability of the random sampling approach, 
we performed additional random samplings (with a different 
random seed each time) and recalculated the GPVAD result. As 
is evident from the table in Figure 5, the random sampling 
approach produces very stable results across all three scenarios. 
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FIGURE 5: GPVAD RESULTS (IN $) 
  GPVAD 

  85TH PERCENTILE 95TH PERCENTILE WORST SCENARIO 

Full Cohort Approach (513,763,374) (293,441,348) 362,313,321  

Random Approach Run 1 (508,157,194) (286,549,708) 373,580,935 

Random Approach Run 2 (515,788,554) (295,226,691) 360,822,887 

Random Approach Run 3 (512,286,245) (291,652,102) 365,459,258 

Random Approach Run 4 (513,587,416) (292,779,601) 364,035,113 

Random Approach Run 5 (514,675,793) (294,887,823) 358,851,912 

Mean for Random Approach (512,899,041) (292,219,185) 364,550,021 

Ratio of Standard Deviation over 
Mean for Random Approach 

-1% -1% 2% 

Other considerations 
Companies can calibrate their own policy-level cash flow 
variance and corresponding GPVAD variance for small sample 
sizes of their in-force blocks, and then extrapolate out to see 
whether randomly sampling cohorts on the full in-force is 
expected to achieve a tolerable error. The following methodology 
provides an example of how a company could determine the 
required in-force size to achieve its desired error rate, where 
error is defined as the ratio of the standard deviation of GPVAD 
values across random cohort samples to the true GPVAD value 
of the block: 

1. Randomly sample a manageable subset of policies of size N. 
2. Randomly sample one delay cohort for each of these N 

policies. Calculate the sample GPVAD value, then repeat 
random draws many times, say 100, to produce 100 random 
GPVAD values.  

3. Calculate the means and standard deviations for each set of 
100 values, 𝐺̅ and SG. 

4. Assume that the ratio of relative GPVAD error to the relative 
error of total policy-level cash flows remains constant, and 
then we can use the theory presented in the Statistical 
Theory section above: as the in-force size multiplies by a 
factor of F, that the relative error will shrink by a factor of√𝐹. 

5. Let X be the target sample size to achieve a desired GPVAD 
relative error, and let that desired GPVAD relative error 
tolerance be T. Solve the following equation for X: 
 

SL
𝐺̅
∙ N
𝑁
𝑋 = 𝑇 

 

As an example, if a company were to randomly sample 5,000 
policies from its in-force, and then generate a relative GPVAD 
sampling error (QR

S̅
) of 5% across 100 distinct cohort samples, it 

would require an in-force size of 125,000 policies to achieve an 
approximate GPVAD relative error of 1%. These numbers are for 
illustration only. 

Note that as more GPVAD values are sampled in Step 2, the 
sample mean 𝐺̅ becomes a closer and closer estimate to the true 
GPVAD value for the selected subset of policies. By taking 100 
samples, probability theory tells us that the standard error of the 
sample mean will be approximately equal to the standard 
deviation of the samples divided by 10, the square root of 100. 
This square root rule holds for all potential sample sizes. By 
taking 100 random samples to calibrate our first point, we 
guarantee that the standard error of the sample mean 𝐺̅ is only 
about 10% of the standard deviation of GPVADs, assuring that 
our estimate of the relative GPVAD sampling error (QR

S̅
) is a 

precise estimate. The practitioner can also choose to run all 
cohorts on this subset of policies to obtain a true value for 
GPVAD for comparative purposes. 

There are some extreme cases where even fairly large in-force 
sizes cannot completely immunize the simple random sampling 
process from intolerable variation. In cases where a few policies 
contribute disproportionately to the metric of interest, the selection 
of a WDCM cohort for those few policies will also 
disproportionately affect the variance. If a company is unable to 
smooth out the variance due to such skewed distributions, it can 
choose to model all WDCM cohorts for its riskier business blocks, 
while using the random approach to sample WDCM cohorts for the 
other business blocks. This approach could be used on a smaller 
entity that exhibits such skewness in cases where reserves are 
reported at the level of the legal entity and/or sub-group.
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Aside from the number of policies, the speed of convergence will 
depend on how materially different the probability distributions 
are between distinct WDCM cell keys. For example, if the 
contribution to the GPVAD result at each initial withdrawal age 
were not materially different among a group of WDCM cell keys 
within an in-force file, we would expect the randomly sampled 
results to converge much faster than a similarly sized in-force 
with vastly different WDCM cell key distributions. However, in the 
latter case companies can attempt to identify underlying 
characteristics of the WDCM cell key that produce high variances 
and adjust their sampling methods to achieve better convergence 
(for example, leveraging stratified sampling by selecting more 
than one cohort per policy). 

Lastly, when considering the random sampling approach 
companies should set seeds for each random draw for the sake 
of reproducibility. To preserve independence between unique 
policyholder decisions, it is important that these seeds are unique 
to each policyholder. Additionally, companies may wish to set 
distinct seeds across economic scenarios and perhaps even 
across valuation dates. By selecting unique seeds across 
policyholder, economic scenario (and, potentially, valuation date), 
practitioners can reduce overall bias from the random sampling 
method within valuation dates and across them. Of course, it is 
important to first implement this modeling approach and analyze 
these considerations in a test bed environment before moving 
them to production. 

Conclusion 
In recognition of the potential run-time challenges posed by the 
Withdrawal Delay Cohort Method for variable annuity statutory 
valuation requirements under the VM-21 Standard Projection, we 
expect that companies will be looking to incorporate innovative 
solutions to manage the computational burden. Random 
sampling offers one such solution, and one that is allowed within 
the proposed framework. 
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