
Implementing Columnar Databases
With R

JUNE 2020

Manikant Prasad

CONTENTS

Contents
Introduction 1

Connecting to MariaDB 1
System Requirements . 1
R Packages Required . 1
Creating Connection Object . 1
Executing Queries . 2
Fetching Query ResultSet . 2
Closing Database Connection . 2

Rowstore vs. Columnstore 2
Rowstore Databases . 2
Columnstore Databases . 3
Benchmarking . 3

System configuration . 3
Data . 3
Queries . 3

Interpreting Benchmarking Results . 3

Using Columnstore database: Restriction 4

Conclusion 4

Introduction
With thegrowingdata volume,wearenow facingusecaseswheredata storedondisk, asfiles, is too large
for the systems to handle and manage, and needs to be stored outside of the system, in a database, so
that one can connect to the database, when needed, to retrieve only the chunks needed for the current
analysis.

In thispaper,weare trying to solve theproblemwhereasystemorapplication,built overR,cancommunicate
to a database with massive data volume, residing on a remote system, to retrieve only the chunks of
data needed for current analysis to gain scalability and speed by leveraging the data management and
queryingspeedof thedatabases. WealsoperformasimplebenchmarkingbetweenMariaDBColumnstore
and MariaDB Rowstore databases, which are both well-known, stable, and open source databases, to
select the right type of database for an analytics use case.

Connecting to MariaDB
Connecting to MariaDB databases, whether it’s the Columnstore or Rowstore database, is quite simple
anduses thesamesetof libraries and functions. Weassume that youalreadyhave theMariaDBdatabases
installed on a system. Please refer to MariaDB Rowstore and Columnstore installation guides, in case
you need help installing or updating the databases. We have used MariaDB Columnstore 1.1.6 and
MariaDB Server 10.3.9 in this paper for the benchmarking.

SYSTEM REQUIREMENTS
AMariaDB orMySQLOpen Database Connectivity(ODBC) connector should be installed on the system
prior to installingR libraries. (libmariadb-client-lgpl-devor libmysqlclient-dev (deb),mariadb-connector-
c-devel ormariadb-devel (rpm),mariadb-connector-cormysql-connector-c (brew),unixodbc-dev (unix))

R PACKAGES REQUIRED
odbc package needs to be installed first for the transfer of data between the MariaDB Server and
R environment.

The RMariaDB package provides the database interface and the driver to MariaDB databases by
implementing a Database Interface(DBI)-compliant interface to MariaDB and MySQL databases.

To load the packages into your active R environment, use the library() function.

library(odbc)
library(RMariaDB)

CREATING CONNECTION OBJECT
Forestablishingaconnectionwith theMariaDBServer and fetching theconnectionobject, thedbConnect()
function is used.

dbConnect(drv = RMariaDB::MariaDB(), username = "username",
password = "password", host = "host", port = 3306)

Arguments

drv: The DBI Driver object. In the case of MariaDB, it should be RMariDB::MariaDB()

username: Username of the database you want to use for establishing connection with the server

password: Password of the user selected

host: IP of the serverwhere the database has been installed. Use localhost in caseswhere a database
is on the same server

port: Port on which the database is reachable. The default port is 3306.

Implementing columnar databases with R 1 JUNE 2020

https://mariadb.com/kb/en/library/getting-installing-and-upgrading-mariadb/
https://mariadb.com/kb/en/library/columnstore-getting-started/
https://cran.r-project.org/web/packages/odbc/index.html
https://cran.r-project.org/web/packages/RMariaDB/index.html

Executing Queries

Store the output of dbConnect() in a variable to use the connection object created.

EXECUTING QUERIES
Forexecutingqueries thatdonotproducea result set, like anUpdate statement, thedbExecute() function
should be used. It returns the number of affected rows after executing the statement.

dbExecute(conn, statement, ...)

Arguments

conn: Active connection object created by dbConnect()

statement: A string containing a valid SQL statement

FETCHING QUERY RESULTSET
For executing queries that return a result set, like aSelect statement, the dbGetQuery() function is used.
It returns the result of the query as a data frame object.

dbGetQuery(conn, statement, ...)

Arguments

conn: Active connection object created by dbConnect()

statement: A string containing a valid SQL statement

CLOSING DATABASE CONNECTION
Once all the work is done and the database connection is no longer required, one should close the
connection to free acquired resources. For closing an active connection, the dbDisconnect() function is
used. In case a connection was closed or killed prior to calling dbDisconnect(), a warning is issued on
calling the function.

dbDisconnect(conn, ...)

Arguments

conn: Active connection object created by dbConnect()

Rowstore vs. Columnstore
From the previous section, it is clear that interacting with MariaDB databases, either MariaDB Server
or Columnstore, is quite easy and exactly alike. Most of the queries used for different operations on the
two databases are almost the same. However, they differ significantly in their working and underlying
structures, starting with their storage engines and mechanisms. The MariaDB row-based database,
like any other rowstore database, has been designed for online transaction processing(OLTP) workload
and generally works better for transaction-oriented applications. Whereas, columnstore databases are
generally designed for online analytical processing(OLAP) workload and generally perform a lot better
for modern analytics applications.

ROWSTORE DATABASES
Rowstore databases have row oriented storage, which basically means all the column values from a
row are stored together physically. Almost all the popular rowstore databases follow strong principles
of indexes and use that to physically sort data and improve performance through lookup using index
tables, which are normally stored as B-trees. Use of indexes speeds up the look-up for specific rows and
thus improves performance for transactional queries.

Implementing columnar databases with R 2 JUNE 2020

https://en.wikipedia.org/wiki/Online_transaction_processing
https://en.wikipedia.org/wiki/Online_analytical_processing

Columnstore Databases

COLUMNSTORE DATABASES
Columnstore databases, as the name suggests, store tables by columns instead of rows. All the values
from a particular column are stored in the same file or set of files. It significantly reduces the size of
the data being scanned for queries, especially for the analytics tables with hundreds of fields. Normally,
columnar databases like MariaDB Columnstore will have better and more optimized compression and
decompression strategies.

BENCHMARKING
WedidasimplebenchmarkingbetweenMariDBRowstoreandColumnstoredatabases to seeandcompare
theperformanceof the twoon thesamedataset and for the samequeries. For this,weselectedWikipedia’s
hourly page views data.

System configuration
For our benchmarking, we used two systems with the same hardware configurations. Both systems
were running Ubuntu 18.04 with 32GB of RAM and 50GB of solid-state drive(SSD) storage. The only
configuration that was changed was to increase the database sort buffer size to allow heavy sorts. No
clustered or non-clustered index was created.

Data
Each row in page views data has four rows, Category, Pagename, Number of Requests, and Size of the
data returned. Data for each hour had a separate file. We had to add additional columns in each file
to denote year,month, date, and hour for each row, before uploading them in the database, for better
understanding of data.

We created three different tables from the hourly page views data set, each containing page views data
for:

Two hours (12 million rows)

12 hours (71 million rows)

24 hours (154 million rows)

Queries
We ran four different basic analytical queries, on each table, each performing a different operation.

Requests per hour: Simple aggregation to sum the number of requests received per hour, an
integer column with low cardinality.

Requests per category and day: Aggregating the requests received for two columns, out of which
was a column with high cardinality.

Top pages in english category: Filtering the data based on a column value and then sorting the
data set based on aggregation of the requests received.

Page1 vs page2 - Applying a simple filter on a column for a set of values.

INTERPRETING BENCHMARKING RESULTS
The Table in figure 1 shows the results from the benchmarking and looking at them it is quite clear that
MariaDB Columnstore performed drastically well against Rowstore, especially at higher data volumes.
Columnstore seems to be quite graceful in handling the growth in volumes of data. The third query,
involving an aggregation and sort along with filtering, was the most complex and Columnstore took
hardly a minute more to run for a data set 12 times greater than that in the first data set, whereas the
Rowstore took almost 13minutesmore, for the third data set, than it took for the first data set. It is quite
evident that the indexing here would have been quite helpful for Rowstore, whereas, the Columnstore
performed quite well even without any kind of indexing.

Implementing columnar databases with R 3 JUNE 2020

https://mariadb.com/kb/en/library/columnstore-storage-architecture/#compression-with-real-time-decompression
https://mariadb.com/kb/en/library/columnstore-storage-architecture/#compression-with-real-time-decompression
https://dumps.wikimedia.org/other/pagecounts-raw/

Table 1: MariaDB Columnstore vs MariaDB Rowstore

Query Data MariaDB Columnstore MariaDB Rowstore

Requests/Hour

2 Hours 1.022s 11.732s

12 Hours 3.92s 75.36s

1 Day 7.535s 169.97s

Requests/Category & Day

2 Hours 1.612s 12.741s

12 Hours 7.225s 93s

1 Day 16.307s 182.1s

Top Pages in English Category

2 Hours 7.343s 49.412s

12 Hours 36.016s 308.88s

1 Day 69.96s 839.64s

Page1 vs Page2

2 Hours 1.221s 10.863s

12 Hours 12.878s 84.66s

1 Day 20.667s 127.98s

Using Columnstore database: Restriction
Columnar databases are designed to read or write data in bulk and sequentially. Any use case involving
largeamountsof randomor transactional readorwrite is going toperformpoorlywhile usingacolumnar
database. For thesame reason,updates tend tobequite slowoncolumnardatabasesbecause it involves
transactional read andwrite, for which the columnar databases are not optimized. It is critical to restrict
updates to a minimum while using columnar databases.

Conclusion
We saw how easy it is to get going with the MariaDB databases (or even any other database) using R,
requiring knowledge of a limited number of packages with little or no complexities involved.

One thing to note here is that all these queries read data sequentially, which most of the analytical
queriesdo, rather than randomly, forwhichRowstore ismoreoptimized. Whereas thestoragearchitecture
for columnar databases makes them more suitable for sequential read and write. Any query trying to
read or write data randomly, like an update statement, will run better for Rowstore databases. For the
same reason, columnar databases perform quite well and are now preferred, for analytics use cases,
over row-orienteddatabases. However, for transactional usecases, columnardatabasesareno replacement
for Rowstore databases.

Implementing columnar databases with R 4 JUNE 2020

Milliman is among the world’s largest providers of actuarial and
related products and services. The firm has consulting practices in
life insurance and financial services, property & casualty insurance,
healthcare, and employee benefits. Founded in 1947, Milliman is an
independent firm with offices in major cities around the globe.

CONTACT
Milliman.VALUES@milliman.com

milliman.com

©2020Milliman, Inc. All Rights Reserved. Thematerials in this document represent the opinion of the authors and are not representative of the views ofMilliman, Inc. Milliman does not certify the information,
nor does it guarantee the accuracy and completeness of such information. Use of such information is voluntary and should not be relied upon unless an independent review of its accuracy and completeness
has been performed. Materials may not be reproduced without the express consent of Milliman.

mailto:Milliman.VALUES@milliman.com
http://www.milliman.com/

	Introduction
	Connecting to MariaDB
	System Requirements
	R Packages Required
	Creating Connection Object
	Executing Queries
	Fetching Query ResultSet
	Closing Database Connection
	Rowstore vs. Columnstore
	Rowstore Databases
	Columnstore Databases
	Benchmarking
	System configuration
	Data
	Queries

	Interpreting Benchmarking Results
	Using Columnstore database: Restriction

	Conclusion

